Two episodes of Mesozoic mafic magmatism in the Nansha Block: Tectonic transition from continental arc to back-arc basin

Lithos ◽  
2021 ◽  
pp. 106502
Author(s):  
Xiu-Quan Miao ◽  
Xiao-Long Huang ◽  
Wen Yan ◽  
Fan Yang ◽  
Wan-Feng Zhang ◽  
...  
10.1144/m55 ◽  
2021 ◽  
Vol 55 (1) ◽  
pp. NP-NP

This memoir is the first to review all of Antarctica's volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world's major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).


2017 ◽  
Vol 58 (8) ◽  
pp. 1591-1617 ◽  
Author(s):  
Guadalupe Maro ◽  
Pablo J Caffe ◽  
Rolf L Romer ◽  
Robert B Trumbull

2020 ◽  
Vol 55 (7) ◽  
pp. 5308-5329
Author(s):  
Mutum Rajanikanta Singh ◽  
Athokpam Krishnakanta Singh ◽  
M. Santosh ◽  
Muddarmaiah Lingadevaru ◽  
Nongmaithem Lakhan

Lithos ◽  
2009 ◽  
Vol 107 (3-4) ◽  
pp. 185-204 ◽  
Author(s):  
Yao-Hui Jiang ◽  
Shao-Yong Jiang ◽  
Bao-Zhang Dai ◽  
Shi-Yong Liao ◽  
Kui-Dong Zhao ◽  
...  

2020 ◽  
Vol 132 (9-10) ◽  
pp. 1863-1880 ◽  
Author(s):  
Yunying Zhang ◽  
Chao Yuan ◽  
Min Sun ◽  
Xiaoping Long ◽  
Zongying Huang ◽  
...  

Abstract Identification of subduction to post-collisional tectonic transitions is critical to the study of orogenic belts. To characterize such a transition in the Tianshan Orogenic Belt, a systematic study was conducted on the late Carboniferous (305–301 Ma) Hongshankou dolerite and Dikan’er basalt of Eastern Tianshan. The Hongshankou dolerites have relatively high Ti and Nb contents, akin to Nb-enriched arc basalts. Based on the Nb/La ratios, these dolerites can be divided into low-Nb/La (0.35–0.40) and high-Nb/La (0.67–1.4) groups, which were likely derived respectively from slab melt-metasomatized mantle wedge and a mixed mantle source involving depleted super-slab and enriched sub-slab asthenospheric components. Like the low-Nb/La dolerites, the Dikan’er basalts possess low Nb/La (0.42–0.46) ratios, suggesting a mantle source previously modified by slab components. In addition, the Dikan’er basalts have variable Nb contents and can be grouped into normal arc basalts and Nb-rich basalts that can be attributed to a common mantle source with different degrees of mantle melting, as demonstrated by the positive correlations of La/Sm with La and Nb. By integrating available data, two late Carboniferous belts of Nb-enriched mafic magmatism are recognized in the Eastern Tianshan, with one in the Yamansu arc (336–301 Ma) and the other in the Bogda Mountains (305–301 Ma). The former is characterized by low Nb/La (<0.6) ratios, reflecting derivation from mantle metasomatized by slab-derived melt during a subduction process; the latter exhibits an abrupt Nb/La increase from 0.6 to 1.4, indicating significant input of sub-slab asthenospheric mantle that was probably induced by slab break off. Accordingly, we propose that the tectonic transition from subduction to post-collision in the Eastern Tianshan occurred in the latest Carboniferous (305–301 Ma) and was marked by the abrupt input of deep and enriched asthenospheric mantle.


2020 ◽  
Vol 132 (11-12) ◽  
pp. 2415-2431 ◽  
Author(s):  
Yilong Li ◽  
Wenjiao Xiao ◽  
Zhuoyang Li ◽  
Ke Wang ◽  
Jianping Zheng ◽  
...  

Abstract The supercontinent Rodinia existed as a coherent large landmass from 900 to 750 Ma and is now dispersed over all current major continents. Controversy has long surrounded the reconstructions of the East Asian blocks in Rodinia, especially the South China craton and nearby microcontinents. The Central Qilian block is a Precambrian microcontinent in the early Paleozoic Qilian orogenic belt, which is located in the northeastern part of the Qinghai-Xizang (Tibet) Plateau and marks the junction of the North China, South China and Tarim cratons. The formation and tectonic affinity of the Precambrian basement in the Central Qilian block is unclear, which affects our understanding of the assembly of Rodinia. The Huangyuan Group and the Maxianshan Group crop out in the eastern part of the block and represent the lower part of the basement. In this paper, we present a systematic study of the petrology, whole-rock geochemistry, and geochronology of amphibolites and orthogneisses from the Huangyuan and Maxianshan Groups. The protolith of the amphibolites was tholeiitic and calc-alkaline gabbro or gabbroic diorite formed in a continental arc environment, with laser ablation–inductively coupled plasma mass spectrometry (LA-ICPMS) zircon U-Pb ages of 967–957 Ma, a wide range of εHf(t) values of –3.74 to +5.06 and TDM1 model ages peaking at 1470 Ma and 1607 Ma. Minor inherited zircon grains with older ages of 1207–1515 Ma were collected from the amphibolites. The primitive magma was derived from partial melting of a spinel-facies fertile (lherzolite) lithospheric mantle that was modified by fluids and melts from a subducted slab. Fractionation of olivine, Fe-Ti oxides and plagioclase played a dominant role in the magma differentiation for gabbroic rocks in the Huangyuan Group, while fractionation of olivine and clinopyroxene controlled differentiation to form Maxianshan Group gabbros. The protolith of orthogneisses includes weakly peraluminous I-type and A2-type granites with consistent LA-ICPMS zircon U-Pb ages of 963–936 Ma, a wide range of εHf(t) values of –3.86 to +6.15 and TDM2 model age peaks at 2001 Ma and 1772 Ma. A few inherited zircon grains yield ages of 1033–2558 Ma. The peraluminous I-type granites resulted from a low-pressure partial melting process and the peraluminous A-type granites were derived from a charnockite source heated by large-scale magmatic underplating. Fractionation of plagioclase, biotite, and K-feldspar from the magma played the main role during the generation of the granitoids. The intrusion of these granites is related to a back-arc extension. It is inferred that the lower part of Precambrian basement of the Central Qilian block is composed mainly of early Neoproterozoic rock assemblages formed in a trench-arc-basin system during the assembly of the Rodinia supercontinent, with probable existence of late Paleoproterozoic to Mesoproterozoic continental nuclei. Combining our results with existing data, we identify a sequence of initial intra-oceanic subduction (ca. 1121–967 Ma) in front of a continental nucleus, continuous subduction of oceanic crust beneath the continental mass with formation of a mature continental arc and a back-arc basin (ca. 967–896 Ma) and continental rifting (<ca. 882 Ma) during the formation of the Central Qilian block. As a mature continental arc after ca. 967 Ma, the Central Qilian block was located at the margin of Rodinia and faced the Neoproterozoic Mirovoi Ocean. The breakup of the supercontinent left the Central Qilian block as a late Neoproterozoic isolated arc terrane.


2021 ◽  
Vol 12 (3) ◽  
pp. 101120
Author(s):  
Xin He ◽  
Wei Wang ◽  
M. Santosh ◽  
Jiachen Yao ◽  
Kangting Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document