Effect of particle size of wheat on nutrient digestibility, growth performance, and gut microbiota in growing pigs

2016 ◽  
Vol 183 ◽  
pp. 33-39 ◽  
Author(s):  
Z. Bao ◽  
Y. Li ◽  
J. Zhang ◽  
L. Li ◽  
P. Zhang ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 375
Author(s):  
Sheena Kim ◽  
Jin Ho Cho ◽  
Younghoon Kim ◽  
Hyeun Bum Kim ◽  
Minho Song

The present study was conducted to evaluate the effects of replacing corn with brown rice on growth performance, nutrient digestibility, carcass characteristics, and gut microbiota of growing and finishing pigs. A total of 100 growing pigs (23.80 ± 2.96 kg BW; 10 weeks of age) were randomly allotted to 4 dietary treatments (5 pigs/pen; 5 replicates/treatment) in a randomized complete block design (block = BW) as follows: corn-soybean meal basal diet (CON) and replacing corn with 50% (GBR50), 75% (GBR75), and 100% (GBR100) of ground brown rice. Each trial phase was for 6 weeks. During the growing period, there were no differences on growth performance and nutrient digestibility among dietary treatments. Similarly, no differences were found on growth performance, nutrient digestibility, and carcass characteristics of pigs during the finishing period among dietary treatments. As a result of the beta diversity analysis, microbial populations were not clustered between CON and GBR100 during the growing phase, but clustered into two distinct groups of CON and GBR100 during the finishing phase. In conclusion, brown rice can be added to the diets of growing-finishing pigs by replacing corn up to 100% without negatively affecting growth performance of the pigs; additionally, this may have an effect on changes in pig intestinal microbiota if continued for a long time.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1374
Author(s):  
Bingbing Huang ◽  
Huangwei Shi ◽  
Li Wang ◽  
Lu Wang ◽  
Zhiqian Lyu ◽  
...  

This study was conducted to determine the effects of low-protein diet prepared with different levels of defatted rice bran (DFRB) and weight stages on growth performance and nutrient digestibility of growing–finishing pigs. The animal experiment included three stages. A total of 240 growing pigs with an initial body weight of 28.06 ± 8.56 kg for stage 1 were allocated to five diets including one control group and four DFRB diets supplemented with 2.5%, 5%, 7.5% and 10% DFRB, respectively. The 192 crossbred pigs with initial body weights of 55.03 ± 7.31 kg and 74.55 ± 9.10 kg were selected for stage 2 and stage 3, respectively. Pigs were allocated to four diets including one control group and three DFRB diets supplemented with 10%, 15% and 20% DFRB, respectively. The results showed that with the increase in DFEB intake, the gain: feed was linearly increased (p < 0.05), and the average daily feed intake tended to linearly decrease (p = 0.06) in stage 1. Except for the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF) in stage 3, levels of DFRB had significant effects on the ATTD of gross energy (GE), dry matter (DM), ash, neutral detergent fiber (NDF) and ADF in three weight stages. In stage 1, with the increase in levels of DFRB, the ATTD of NDF and hemicellulose were firstly increased and then decreased (p < 0.01). In stage 2, with the increasing levels of DFRB, the ATTD of DM, ash and cellulose were firstly increased and then decreased (p < 0.01). In stage 3, the ATTD of GE, DM, ash, NDF and hemicellulose decreased linearly with the increase in levels of DFRB (p < 0.01). Collectively, DFRB could be used as a replacement for corns and soybean meal, and weight stage is important to consider when adjusting the additive proportion.


Author(s):  
De Xin Dang ◽  
In Ho Kim

The purpose of this study was to evaluate the effects of dietary supplementation of Quillaja saponin (QS) on growth performance, nutrient digestibility, fecal microbiota, and fecal gas emission in growing pigs. A total of 50 crossbred growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight of 23.83 ± 1.95 kg were randomly assigned to 1 of 2 treatments for a 56-day trial with 5 replicate pens per treatment and 5 pigs (2 barrows and 3 gilts) per pen. Dietary treatments including control diet and control diet supplemented with 200 mg/kg QS. The average daily gain was significantly increased during days 0-56, while the fecal ammonia emission on day 56 and fecal coliform bacteria counts on day 28 were significantly decreased in pigs fed with QS containing diet. However, dietary supplementation of QS had no significant effects on apparent total tract digestibility. In conclusion, dietary supplementation of 200 mg/kg QS had beneficial effects on growth performance, fecal microbiota, and fecal gas emission in growing pigs. Considering the carry-over effects, the adaption period should be at least 28 days when supplementing 200 mg/kg QS to the diet of growing pigs for improving the growth performance.


Sign in / Sign up

Export Citation Format

Share Document