Influence of a feed additive containing vitamin B12 and yeast extract on milk production and body temperature of grazing dairy cows under high temperature-humidity index environment

2019 ◽  
Vol 221 ◽  
pp. 28-32 ◽  
Author(s):  
Jefferson R. Gandra ◽  
Caio S. Takiya ◽  
Tiago A. Del Valle ◽  
Natyaro D. Orbach ◽  
Igor R. Ferraz ◽  
...  
2011 ◽  
Vol 57 (4) ◽  
pp. 450-456 ◽  
Author(s):  
Hisashi NABENISHI ◽  
Hiroshi OHTA ◽  
Toshihumi NISHIMOTO ◽  
Tetsuo MORITA ◽  
Koji ASHIZAWA ◽  
...  

Author(s):  
Е.О. КРУПИН

В различные синоптические сроки выявлено количество измерений по индексу температуры и влажности (ТВИ) в животноводческом помещении, при которых у коров наблюдается тепловой стресс. Спрогнозированы данные о температуре тела и частоте дыхания коров в условиях теплового стресса и его отсутствия, в том числе и по четырем срокам измерений. Определен потенциально возможный уровень молочной продуктивности коров при отсутствии теплового стресса. По методу E.C. Thom установлено, в среднем, 80,0% значений ТВИ, характеризующих условия среды как «тепловой стресс». Наблюдалось увеличение доли данных значений с 10 ч утра до 19 ч. По A. Berman et al. Выявлено, в среднем, 10,9% значений ТВИ, а по M.K. Yousef — 5,0%, относящихся к тепловому стрессу. В 15-й синоптический срок измерений по Гринвичу в животноводческом помещении спрогнозирована наибольшая вероятность теплового стресса. Среднее увеличение температуры тела коров с 6-го по 15-й синоптические сроки измерений при тепловом стрессе составит 1,0% (0,4°C, P<0,001), а частоты дыхания — 51,3% (18 дыхательных движений в 1 мин, (P<0,001). Максимальная динамика увеличения температуры тела наблюдается в 13 ч и 16 ч, а частоты дыхания — в 13 ч. Потенциальная молочная продуктивность дойных коров в летние месяцы может быть в среднем на 8,9% выше. In various synoptic terms in the cowshed room, the amount of measurements of the temperature of the heat and humidity index was revealed when the cows suffer from thermal stress. Data on body temperature and respiration rate of cows in conditions of heat stress and its absence were predicted, including those for four measurement periods. Potentially possible level of milk production of cows in the absence of heat stress was determined. According to E.C. Thom is found on average 80.0% of the values of THI, characterizing environmental conditions as "heat stress". An increase in the share of these values is observed in the period from 10:00 to 19:00. According to A. Berman et al. revealed on average 10.9% of THI values, and according to M.K. Yousef — 5.0% of the THI values related to heat stress. In 15, the synoptic term of measurements in Greenwich in the cowshed, the highest probability of heat stress is predicted. The average increase in body temperature of cows from 6 to 15 synoptic term of measurements in Greenwich heat stress will be 1.0% (0.4°C, P<0.001), and the respiration rate will be 51.3% (18 respiratory movements per minute, P<0.001). The maximum dynamics of an increase in body temperature is observed at 13:00 and 16:00 for body temperature, and respiratory rate at 13:00. The potential milk production of dairy cows in the summer months can be 8.9% higher on average.


2002 ◽  
Vol 51 (6) ◽  
pp. 479-491 ◽  
Author(s):  
Rachid Bouraoui ◽  
Mondher Lahmar ◽  
Abdessalem Majdoub ◽  
M'nouer Djemali ◽  
Ronald Belyea

Author(s):  
A. Narmilan ◽  
N. Puvanitha ◽  
A. Sharfan Ahamed ◽  
S. Santhirakumar

Background: Dairy cattle in many tropical, subtropical and semi-arid regions are subject to high ambient temperature and relative humidity for extended periods of time. This compromises the ability of the lactating cows to dissipate heat, resulting in heat stress and decreasing milk production. The objective of this study was to evaluate the effect of the temperature-humidity index (THI) on milk production in cows in the study area. Methods: Data on monthly milk production (2017 to 2019) was collected from the Department of Animal Production and Health, Batticaloa District, Sri Lanka and the monthly weather data (2017 to 2019) required for the study was collected from the Meteorological Observatory Station in Batticaloa, Sri Lanka. SPSS version 26 was used to analyze interaction between milk production and weather parameters. The monthly THI values were determined for each year.Result: Statistically significant negative relationship (p less than 0.05) was found between milk production and THI in 2017, 2018 and from 2017 to 2019 except 2019 due to the sudden death of cattle in Batticaloa district. Results of all three years indicated that milk production decreases as THI increases. It is concluded that the milk yield of cows is influenced significantly by heat stress during the dry season from April to August between 2017 and 2019, proper management strategies could be helpful to minimize heat stress to attain optimal performance of dairy cows.


Author(s):  
D. Tristant ◽  
C. A. Moran

SummaryThe following trial was conducted to evaluate the impact of feeding Yea-Sacc® (YS; Alltech Inc, USA), a zootechnical feed additive based on a live probiotic strain of Saccharomyces cerevisiae, to lactating dairy cows over a 12 week period. Sixty-four primiparous and multiparous Holstein dairy cows, grouped to give similar range of parity, physiological and milk production stages, were selected for the study. Cows were equally allocated to either a control feed group or a diet supplemented with YS (32 cows per treatment). The test diet was formulated to include YS (Yea-Sacc® Farm Pak) incorporated in the total mixed ration (TMR), supplying a target dose of 5 × 107 CFU/kg feed dry matter (DM). This target dose delivered 1 × 109 CFU/cow/day, for a cow consuming 20 kg feed (DM basis) daily. Each cow was considered a replicate unit. Cows were fed a nutritionally adequate total TMR plus hay and a supplementary protein/energy concentrate (calculated according to milk yield) for 12 weeks, supplied once a day after the morning milking. Weigh backs of feed were recorded daily, with refusals being maintained at 3% of the total intake. During the 12 week study period, YS had significant beneficial effects on milk production (+0.8 kg/day; P = 0.003), energy corrected milk production (+1.4 kg/day; P < 0.0001), synthesis of milk protein (+36 g/day; P = 0.001), milk protein content (+0.3 g/kg; P = 0.009), and milk urea content (−0.09 mg/l; P = 0.004). The synthesis of milk fat was similar between treatments but milk fat content was lower for the YS group compared to the control group (−1.1 g/kg; P = 0.0002). Lactose content was always higher (+0.8 g/kg; P < 0.0001) for the YS group, indicating enhanced energy utilisation. In general, the effect of YS was higher during the first study period (one to seven weeks), when cows were in early lactation and the production potential was higher. YS cows produced significantly more milk during the study, and an additional 220 kg milk per cow was sold from this group from the output measured from the beginning of the study to two weeks post-trial. However, the statistical analysis including the post-study period did not show a significant effect. The 305-day simulated milk production was higher for the YS group (+400 kg/cow) but again the difference was not significant. In conclusion, YS at a target dose of 5 × 107 CFU/kg DM improved milk production and milk quality in healthy dairy cows. In addition, when the data were included in a whole-farm model, feeding YS reduced methane emissions by 4%, reduced the number of animals required for the desired milk production by 4% and increased overall farm margins by 1.4%.


2021 ◽  
Vol 13 (2) ◽  
pp. 22-27
Author(s):  
Ivan Imrich ◽  
Róbert Toman ◽  
Martina Pšenková ◽  
Eva Mlyneková ◽  
Tomáš Kanka ◽  
...  

The aim of this study was to evaluate the influence of environmental housing conditions on the milk yield of dairy cows. Measurements were taken in the summer period from June to September 2020 and in the winter period during January 2021 on a large-capacity farm of Holstein Friesian cattle. Cows were housed in free stall barn with the lying boxes and selected during the second or third lactations, in the summer period from the 51st day to the 135th day and in the winter period from the 64th day to the 120th day of lactation. The average temperature in the housing was 23 °C in summer, and 7.05 °C in winter. The average THI (thermal humidity index) value in summer was 70.43, but during the day the THI values sometimes reached 75. The dairy cows were therefore exposed to heat stress during summer. Increasing THI and temperature values negatively affected the milk yield, as there was a negative correlation between both THI and milk yield (r = -0.641; p <0.01) and temperature and milk yield (r = -0.637; p <0.01). Milk production in winter was at 58.77 kg per day and in summer at 49.55 kg per day. In the summer, the milk had a significantly lower content of fat (p <0.05), proteins (p <0.001), lactose (p <0.001), minerals (p <0.001) and conversely, a higher number of somatic cells (p <0.01). These results show that worse environmental conditions during the summer negatively affected the level of milk yield and the composition of the cows’ milk.


Sign in / Sign up

Export Citation Format

Share Document