The apoptosis of Staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response

LWT ◽  
2019 ◽  
Vol 99 ◽  
pp. 62-68 ◽  
Author(s):  
Hou-Qi Ning ◽  
Ying-Qiu Li ◽  
Qi-Wen Tian ◽  
Zhao-Sheng Wang ◽  
Hai-Zhen Mo
2006 ◽  
Vol 188 (16) ◽  
pp. 5783-5796 ◽  
Author(s):  
Antje Michel ◽  
Franziska Agerer ◽  
Christof R. Hauck ◽  
Mathias Herrmann ◽  
Joachim Ullrich ◽  
...  

ABSTRACT Staphylococcus aureus is an important pathogen, causing a wide range of infections including sepsis, wound infections, pneumonia, and catheter-related infections. In several pathogens ClpP proteases were identified by in vivo expression technologies to be important for virulence. Clp proteolytic complexes are responsible for adaptation to multiple stresses by degrading accumulated and misfolded proteins. In this report clpP, encoding the proteolytic subunit of the ATP-dependent Clp protease, was deleted, and gene expression of ΔclpP was determined by global transcriptional analysis using DNA-microarray technology. The transcriptional profile reveals a strong regulatory impact of ClpP on the expression of genes encoding proteins that are involved in the pathogenicity of S. aureus and adaptation of the pathogen to several stresses. Expression of the agr system and agr-dependent extracellular virulence factors was diminished. Moreover, the loss of clpP leads to a complete transcriptional derepression of genes of the CtsR- and HrcA-controlled heat shock regulon and a partial derepression of genes involved in oxidative stress response, metal homeostasis, and SOS DNA repair controlled by PerR, Fur, MntR, and LexA. The levels of transcription of genes encoding proteins involved in adaptation to anaerobic conditions potentially regulated by an Fnr-like regulator were decreased. Furthermore, the expression of genes whose products are involved in autolysis was deregulated, leading to enhanced autolysis in the mutant. Our results indicate a strong impact of ClpP proteolytic activity on virulence, stress response, and physiology in S. aureus.


Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2739-2747 ◽  
Author(s):  
Vineet K. Singh ◽  
Jackob Moskovitz

Staphylococcus aureus contains three genes encoding MsrA-specific methionine sulfoxide reductase (Msr) activity (msrA1, msrA2 and msrA3) and an additional gene that encodes MsrB-specific Msr activity. Data presented here suggest that MsrA1 is the major contributor of the MsrA activity in S. aureus. In mutational analysis, while the total Msr activity in msrA2 mutant was comparable to that of the parent, Msr activity was significantly up-regulated in the msrA1 or msrA1 msrA2 double mutant. Assessment of substrate specificity together with increased reactivity of the cell-free protein extracts of the msrA1 mutants to anti-MsrB polyclonal antibodies in Western analysis provided evidence that increased Msr activity was due to elevated synthesis of MsrB in the MsrA1 mutants. Previously, it was reported that oxacillin treatment of S. aureus cells led to induced synthesis of MsrA1 and a mutation in msrA1 increased the susceptibility of the organism to H2O2. A mutation in the msrA2 gene, however, was not significant for the bacterial oxidative stress response. In complementation assays, while the msrA2 gene was unable to complement the msrA1 msrA2 double mutant for H2O2 resistance, the same gene restored H2O2 tolerance in the double mutant when placed under the control of the msrA1 promoter. However, msrA1 which was able to complement the oxidative stress response in msrA1 mutants could not restore the tolerance of the msrA1 msrA2 mutants to H2O2 when placed under the control of the msrA2 promoter. Additionally, although the oxacillin minimum inhibitory concentration of the msrA1 mutant was comparable to that of the wild-type parent, in shaking liquid culture, the msrA1 mutant responded more efficiently to sublethal doses of oxacillin. The data suggest complex regulation of Msr proteins and a more significant physiological role for msrA1/msrB in S. aureus.


2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Xinyu Liao ◽  
Donghong Liu ◽  
Tian Ding

ABSTRACT As a novel nonthermal technology, nonthermal plasma (NTP) has attracted a lot of attention. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, the molecular mechanisms of VBNC Staphylococcus aureus induced by NTP were investigated. With the use of a propidium monoazide quantitative PCR (PMA-qPCR) technique combined with a plate count method, we confirmed that 8.1 to 24.3 kJ NTP induced S. aureus into a VBNC state at a level of 7.4 to 7.6 log10 CFU/ml. The transcriptomic analysis was conducted and revealed that most energy-dependent physiological activities (e.g., metabolism) were arrested in VBNC S. aureus, while the oxidative stress response-related genes (katA, dps, msrB, msrA, and trxA) were significantly upregulated. In addition, this study showed that the ATP depletion by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) pretreatment could accelerate the formation of VBNC S. aureus. The NTP-generated oxidative stress triggers the staphylococcal oxidative stress response, which consumes part of cellular energy (e.g., ATP). The energy allocation is therefore changed, and the energy assigned for other energy-dependent physiological activities (cell growth and division, etc.) is reduced, subsequently forcing S. aureus into a VBNC state. Therefore, the alterations of energy allocation should be some of the major contributors to the induction of VBNC S. aureus with NTP exposure. This study provides valuable knowledge for controlling the formation of VBNC S. aureus during NTP treatment. IMPORTANCE In recent years, nonthermal plasma (NTP) technology has received a lot of attention as a promising alternative to thermal pasteurization in the food industry. However, little is known about the microbial stress response toward NTP, which could be a potential risk to food safety and impede the development of NTP. A viable but nonculturable (VBNC) state is one of the most common survival strategies employed by microorganisms against external stress. This study investigated the mechanisms of the formation of VBNC Staphylococcus aureus by NTP in a more comprehensive and systematic aspect than had been done before. Our work confirmed that the NTP-generated oxidative stress induced changes in energy allocation as a driving force for the formation of VBNC S. aureus. This study could provide better knowledge for controlling the occurrence of VBNC S. aureus induced by NTP, which could lead to more rational design and ensure the development of safe foods.


Author(s):  
Petra Horvatek ◽  
Andrew Magdy Fekry Hanna ◽  
Fabio Lino Gratani ◽  
Daniela Keinhörster ◽  
Natalya Korn ◽  
...  

AbstractThe stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog (RSHSau) upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ, upon cell wall stress. We used RNA-Seq to compare the global effects in response to transcriptional induction of the synthetase domain of RSH (RSH-Syn), RelP or RelQ without the need to apply additional stress conditions. Enzyme expression resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than RSH-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. Genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., katA, sodA) and the the psmα1-4 and psmß1-2 operons coding for cytotoxic, phenole soluble modulins (PSMs) were highly upregulated upon (pp)pGpp synthesis. Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis.SignificanceMost bacteria make use of the second messenger (pp)pGpp to reprogram bacterial metabolism under nutrient-limiting conditions. In the human pathogen Staphylococcus aureus, (pp)pGpp plays an important role in virulence, phagosomal escape and antibiotic tolerance. Here, we analyzed the immediate consequences of (pp)pGpp synthesis upon transcriptional induction of the (pp)pGpp-producing enzymes RSH, RelP or RelQ. (pp)pGpp synthesis provokes immediate changes in the nucleotide pool and severely impacts the expression of hundreds of genes. A main consequence of (pp)pGpp synthesis in S. aureus is the induction of ROS-inducing toxic phenol-soluble modulins (PSMs) and simultaneous expression of the detoxifying system to protect the producer. This mechanism is likely of special advantage for the pathogen after phagocytosis.


2006 ◽  
Vol 11 (4) ◽  
pp. 409-423 ◽  
Author(s):  
Kazuya Morikawa ◽  
Ryosuke L. Ohniwa ◽  
Joongbaek Kim ◽  
Atsushi Maruyama ◽  
Toshiko Ohta ◽  
...  

2019 ◽  
Vol 47 (18) ◽  
pp. 9871-9887 ◽  
Author(s):  
David Lalaouna ◽  
Jessica Baude ◽  
Zongfu Wu ◽  
Arnaud Tomasini ◽  
Johana Chicher ◽  
...  

Abstract The human opportunistic pathogen Staphylococcus aureus produces numerous small regulatory RNAs (sRNAs) for which functions are still poorly understood. Here, we focused on an atypical and large sRNA called RsaC. Its length varies between different isolates due to the presence of repeated sequences at the 5′ end while its 3′ part is structurally independent and highly conserved. Using MS2-affinity purification coupled with RNA sequencing (MAPS) and quantitative differential proteomics, sodA mRNA was identified as a primary target of RsaC sRNA. SodA is a Mn-dependent superoxide dismutase involved in oxidative stress response. Remarkably, rsaC gene is co-transcribed with the major manganese ABC transporter MntABC and, consequently, RsaC is mainly produced in response to Mn starvation. This 3′UTR-derived sRNA is released from mntABC-RsaC precursor after cleavage by RNase III. The mature and stable form of RsaC inhibits the synthesis of the Mn-containing enzyme SodA synthesis and favors the oxidative stress response mediated by SodM, an alternative SOD enzyme using either Mn or Fe as co-factor. In addition, other putative targets of RsaC are involved in oxidative stress (ROS and NOS) and metal homeostasis (Fe and Zn). Consequently, RsaC may balance two interconnected defensive responses, i.e. oxidative stress and metal-dependent nutritional immunity.


2020 ◽  
Vol 22 ◽  
pp. 257-262
Author(s):  
Sol Romina Martínez ◽  
Virginia Aiassa ◽  
Claudia Sola ◽  
María Cecilia Becerra

Sign in / Sign up

Export Citation Format

Share Document