antimicrobial coating
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 56)

H-INDEX

23
(FIVE YEARS 6)

Author(s):  
R.L. Hardison ◽  
S.P. Ryan ◽  
R.A. Limmer ◽  
M Crouse ◽  
S.W. Nelson ◽  
...  

2021 ◽  
Vol 161 ◽  
pp. 106497
Author(s):  
Nathapong Sukhawipat ◽  
Anutida Suwan ◽  
Ekwipoo Kalkornsurapranee ◽  
Anuwat Saetung ◽  
Nitinart Saetung

2021 ◽  
Vol 267 ◽  
pp. 424-431
Author(s):  
Aaron Seitz ◽  
Jennifer E. Baker ◽  
Nick C. Levinsky ◽  
Mackenzie C. Morris ◽  
Michael J. Edwards ◽  
...  

Author(s):  
Renjith Sasi ◽  
Sasidharan L. Sreejith ◽  
Gopika Ramesh ◽  
Daisy R. Sherin ◽  
Jyothi E. Kaviyil ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 90-102
Author(s):  
E. O. Krivkina ◽  
V. G. Мatveeva ◽  
L. V. Antonova

Prosthetic vascular graft infections, followed by severe complications and high mortality rates, remain one of the main issues in cardiovascular surgery. Therefore, the development of antimicrobial coating for vascular prostheses that is capable of preventing the infection is a very relevant field. This review outlines the main factors of development of antibiotic-resistant bacteria, the main directions in the development of vascular prostheses with an antimicrobial coating, and the prospects for the application of antimicrobial peptides and cationic amphiphiles as antimicrobial coating to develop an infection-resistant vascular prosthesis.


2021 ◽  
Vol 22 (17) ◽  
pp. 9518 ◽  
Author(s):  
Alberto Tuñón-Molina ◽  
Miguel Martí ◽  
Yukiko Muramoto ◽  
Takeshi Noda ◽  
Kazuo Takayama ◽  
...  

Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries.


Sign in / Sign up

Export Citation Format

Share Document