Influence of indigenous lactic acid bacteria on the volatile flavor profile of light-flavor Baijiu

LWT ◽  
2021 ◽  
pp. 111540
Author(s):  
Xiao-Na Pang ◽  
Chang Chen ◽  
Xiao-Ning Huang ◽  
Yin-Zhuo Yan ◽  
Jing-Yu Chen ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 299
Author(s):  
Zhihai Huang ◽  
Lu Huang ◽  
Guangliang Xing ◽  
Xiao Xu ◽  
Chuanhai Tu ◽  
...  

In this study, a multi-starters fermentation system involved lactic acid bacteria and yeasts was applied to obtain a novel acidified goat milk (AGM). Significant differences were found in the volatile flavor profile among goat milk, goat yogurt, and AGM reflected by principal component analysis of electronic nose (E-nose) data. Gas chromatography–mass spectrometry (GC-MS) results indicated that the relative content of free octanoic acid decreased, and more aromas were formed in AGM, which were considered to mask the goaty smell and give AGM a pleasant flavor. Rheological analysis indicated that AGM had higher apparent viscosity and G’ and G’’ moduli than goat yogurt and goat milk. Therefore, the goat yogurt fermented by lactic acid bacteria and K. marxianus exhibits a new method to alleviate the goaty flavor in goat milk and provides a novel option for those who were allergic to milk protein and dislike goaty flavor in goat milk.


2019 ◽  
Vol 27 ◽  
pp. 30-36 ◽  
Author(s):  
Chen Chen ◽  
Yanqing Lu ◽  
Haiyan Yu ◽  
Zeyuan Chen ◽  
Huaixiang Tian

2022 ◽  
Vol 8 ◽  
Author(s):  
Jie Yang ◽  
Tengqi Gao ◽  
Feng Ge ◽  
Hao Sun ◽  
Zihang Cui ◽  
...  

The demand for roasted seaweed sandwich (Porphyra yezoensis) product has risen in recent years. The product slicing process has created a huge number of scraps that are not utilized effectively. Three lactic acid bacteria (LAB) strains were used to ferment P. yezoensis sauces in this study, including Lactobacillus fermentum, Lactobacillus casei, Streptococcus thermophilus, and the mixed strains (1:1:1, v/v). The fermentation characteristics, antioxidant capacity in vitro, sensory properties, and flavoring substances of fermented P. yezoensis sauces were analyzed. After 21 days of fermentation, all LAB strains grew well in the P. yezoensis sauces, with protease activity increased to 6.6, 9.24, 5.06, and 5.5 U/mL, respectively. Also, the flavors of P. yezoensis sauces fermented with L. casei and L. fermentum were satisfactory. On this premise, gas chromatography-mass spectrometry (GC-MS) was used to investigate the changes in gustatory compounds in P. yezoensis sauces fermented with L. casei and L. fermentum. In general, 42 and 41 volatile flavor chemicals were identified after the fermentation of L. casei and L. fermentum. Furthermore, the fermented P. yezoensis sauce possessed greater DPPH scavenging activity and ferric-reducing ability power than the unfermented P. yezoensis. Overall, the flavor and taste of P. yezoensis sauce fermented by L. casei was superior.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Zhidi Chen ◽  
Jianyi Kang ◽  
Yao Zhang ◽  
Xinxin Yi ◽  
Xiaona Pang ◽  
...  

Abstract Purpose Fermented vegetables can be divided into two types, natural fermented and artificially inoculated fermented. By detecting and identifying the changes of bacterial diversity using physical and chemical indicators during natural and inoculation fermentation, we analyzed and determined the dominant bacteria in the fermentation process and revealed the relationship between bacteria and volatile substances. Methods We used the Illumina Miseq to sequence the bacteria in fermented vegetable samples at different fermentation periods, and calculated the total number of mesophilic microorganisms and lactic acid bacteria. We used the pH and nitrite to monitor the acidification process. GC-MS was used to determine volatile flavor compounds. Finally, we analyzed the correlation between volatile flavor compounds and bacteria. Results Total mesophilic microorganisms and the number of lactic acid bacteria in the inoculated fermentation were higher than the natural fermentation. The bacterial diversity Shannon and Simpson indexes of the natural fermentation, higher than those of inoculated fermentation in 0~7 days, were between 55~71% and 36~45%, respectively. On the 7th day, the proportion of Lactobacillus in the natural fermentation and inoculated fermentation were 53.4% and 90.2%, respectively, which were significantly different. Lactobacillus was the dominant genus in the fermented vegetables and an important genus to promote the formation of volatile flavors. Lactobacillus was negatively correlated with two volatile substances (4-[2,2,6-trimethyl-7-oxabicyclo [4.1.0] hept-1-yl]-3-Buten-2-one (K4) and a-Phellandrene (X1)) and played a leading role in the fermentation process. Conclusions Results demonstrated that the total number of mesophilic microorganisms and lactic acid bacteria in inoculated fermentation were more than those in natural fermentation. Inoculated fermentation can shorten the fermentation cycle and reduce the content of nitrite. Lactic acid bacteria were the dominant bacteria in fermented vegetables.


Author(s):  
Wenchao Cai ◽  
Fengxian Tang ◽  
Xinxin Zhao ◽  
Zhuang Guo ◽  
Zhendong Zhang ◽  
...  

2022 ◽  
pp. 101450
Author(s):  
Liting Liang ◽  
Jacob Ojobi Omedi ◽  
Weining Huang ◽  
Jianxian Zheng ◽  
Yongqing Zeng ◽  
...  

2019 ◽  
Vol 48 (2) ◽  
pp. 100-108 ◽  
Author(s):  
Ольга Пономарева ◽  
Olga Ponomareva ◽  
Екатерина Борисова ◽  
Ekaterina Borisova ◽  
Игорь Прохорчик ◽  
...  

Sour ales have become widely spread in Europe since XVII century. These drinks are still popular in Germany, Belgium, England and other European countries. Interest in sour ales has been growing steadily in Russia. The purpose of this work was to systematize and generalize scientific data and the results of practical use of lactic acid bacteria of the genus Lactobacillus in sour ales production technology and in the formation of the ready beverage flavor profile. The subjects of the research were biochemical and biotechnological properties of lactic acid bacteria of the genus Lactobacillus frequently used in sour ales production, namely, L. delbrueckii, L. brevis, L. buchneri, L. fermentum, L. plantarum. The results of studying sour ales composition by means of gas chromatography, solid phase microextraction, liquid chromatography, and mass spectroscopy show that they have complex compositions. Thus, sour ales of Lambic and Gueuze groups have 64 volatile compounds. Taste and aroma of sour ales are mostly formed by the most important components synthesized during lactic-acid fermentation. They are higher alcohols, complex esters, organic acids, dimethyl sulfide and diacetyl. Concentration of these components is mainly determined by the type of lactic acid bacteria. The article generalizes and systematizes scientific data concerning biochemical and biotechnological properties of different types of lactic acid bacteria of the genus Lactobacillus used for sour ale production. The article reveals concentrations of the main products and by-products synthesized by the given types of lactic acid bacteria during fermentation. The author points out corresponding taste and aroma sensations according to terminology used in European Brewing Convention (EBC).


LWT ◽  
2019 ◽  
Vol 114 ◽  
pp. 108392 ◽  
Author(s):  
Yingying Hu ◽  
Qian Chen ◽  
Rongxin Wen ◽  
Yan Wang ◽  
Ligang Qin ◽  
...  

2002 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
E Simova ◽  
D Beshkova ◽  
A Angelov ◽  
Ts Hristozova ◽  
G Frengova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document