scholarly journals Brain Aging Mechanisms with Mechanical Manifestations

Author(s):  
Yana Blinkouskaya ◽  
Andreia Caçoilo ◽  
Trisha Gollamudi ◽  
Shima Jalalian Sedaghati ◽  
Johannes Weickenmeier
Keyword(s):  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Aliabbas Zia ◽  
Ali Mohammad Pourbagher-Shahri ◽  
Tahereh Farkhondeh ◽  
Saeed Samarghandian

AbstractAging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ming-Li Li ◽  
Shi-Hao Wu ◽  
Jin-Jin Zhang ◽  
Hang-Yu Tian ◽  
Yong Shao ◽  
...  

Abstract Background Brain aging is a complex process that depends on the precise regulation of multiple brain regions; however, the underlying molecular mechanisms behind this process remain to be clarified in non-human primates. Results Here, we explore non-human primate brain aging using 547 transcriptomes originating from 44 brain areas in rhesus macaques (Macaca mulatta). We show that expression connectivity between pairs of cerebral cortex areas as well as expression symmetry between the left and right hemispheres both decrease after aging. Although the aging mechanisms across different brain areas are largely convergent, changes in gene expression and alternative splicing vary at diverse genes, reinforcing the complex multifactorial basis of aging. Through gene co-expression network analysis, we identify nine modules that exhibit gain of connectivity in the aged brain and uncovered a hub gene, PGLS, underlying brain aging. We further confirm the functional significance of PGLS in mice at the gene transcription, molecular, and behavioral levels. Conclusions Taken together, our study provides comprehensive transcriptomes on multiple brain regions in non-human primates and provides novel insights into the molecular mechanism of healthy brain aging.


2021 ◽  
Author(s):  
Eleanor Sams

More than half of the human brain volume is made up of white matter: regions where axons are coated in myelin, which primarily functions to increase the conduction speed of axon potentials. White matter volume significantly decreases with age, correlating with cognitive decline. Much research in the field of non-pathological brain aging mechanisms has taken a neuron-centric approach, with relatively little attention paid to other neural cells. This review discusses white matter changes, with focus on oligodendrocyte lineage cells and their ability to produce and maintain myelin to support normal brain homeostasis. Improved understanding of intrinsic cellular changes, general senescence mechanisms, intercellular interactions and alterations in extracellular environment which occur with aging and impact oligodendrocyte cells is paramount. This may lead to strategies to support oligodendrocytes in aging, for example by supporting myelin synthesis, protecting against oxidative stress and promoting the rejuvenation of the intrinsic regenerative potential of progenitor cells. Ultimately, this will enable the protection of white matter integrity thus protecting cognitive function into the later years of life.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


Sign in / Sign up

Export Citation Format

Share Document