Shear banding behavior of AA2099 Al-Li alloy in asymmetrical rolling and its effect on recrystallization in subsequent annealing

2021 ◽  
pp. 111155
Author(s):  
Haipeng Dong ◽  
Fei Guo ◽  
Weijiu Huang ◽  
Xusheng Yang ◽  
Xianghui Zhu ◽  
...  
2018 ◽  
Vol 3 (9) ◽  
Author(s):  
Yiran Zhang ◽  
Hadi Mohammadigoushki ◽  
Margaret Y. Hwang ◽  
Susan J. Muller

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Sandip Mandal ◽  
Maxime Nicolas ◽  
Olivier Pouliquen

2020 ◽  
Vol 75 (6-7) ◽  
pp. 715-720 ◽  
Author(s):  
Nataliya L. Gulay ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Rainer Pöttgen

AbstractThe scandium-rich indide Sc50Pt13.47In2.53 was obtained by induction melting of the elements and subsequent annealing. The structure of Sc50Pt13.47In2.53 has been refined from single-crystal X-ray diffractometer data: Fm$\overline{3}$, a = 1774.61(3) pm, wR2 = 0.0443, 1047 F2 values and 35 variables. Sc50Pt13.47In2.53 is isopointal with the intermetallic phases Sc50Co12.5In3.5, Sc50Rh13.3In2.7, Sc50Ir13.6In2.4, Ag7+xMg26−x and Ga4.55Mg21.85Pd6.6 (Pearson code cF264 and Wyckoff sequence ih2fecba). Two of the eight crystallographic sites in the structure show mixed occupancies: M1 (≡Pt20.70In10.30) and M2 (≡Pt30.76In20.24). The structure contains four basic polyhedra: M2@Sc8 cubes, Pt1@Sc10 sphenocorona and slightly distorted M1@Sc12 and In3@Sc12 icosahedra. The polyhedra are condensed via common scandium corners and edges. The various Sc–Sc distances range from 302–334 pm and are indicative of substantial Sc–Sc bonding, stabilizing the Sc50Pt13.47In2.53 structure.


Sign in / Sign up

Export Citation Format

Share Document