Surface microstructure and wetting of SiC ceramic modified by ion bombardment

2022 ◽  
pp. 111721
Author(s):  
Xiaoguo Song ◽  
Zubin Chen ◽  
Min Dan ◽  
Bin Han
2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Hongqin Ding ◽  
Shuyun Jiang

This technical brief studied the cavitation erosion behavior of the silicified graphite. The phase constituents, surface microstructure, and chemical compositions of silicified graphite were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS), respectively. Cavitation experiments were carried out by using an ultrasonic vibration test system. The experimental results show that the silicified graphite exhibits an excellent cavitation erosion resistance; this can be attributed to the fact that the silicified graphite has the characteristics of both the silicon carbide and the graphite. The SEM morphology studies of the erosion surfaces indicated that the inherent brittleness of SiC ceramic material results in the formation of erosion pits on the surface of silicified graphite.


Author(s):  
Z.B. Chen ◽  
X.G. Song ◽  
M. Dan ◽  
Y. Luo ◽  
B. Han

Author(s):  
W.M. Skiff ◽  
R.W. Carpenter

SiC refractories made by various pressing and sintering methods may contain structural and chemical heterogenieties similar to tljiose reported for Si3N4 base refractories. Although some earlier work on SiC did not reveal second phases, other oxidation experiments showed the reaction to take place heterogeneously, leading to the supposition that such heterogenieties may be present. In this work we examine a typical commercial SiC ceramic to determine the existence of such structural irregularities.


Author(s):  
A. T. Fisher ◽  
P. Angelini

Analytical electron microscopy (AEM) of the near surface microstructure of ion implanted ceramics can provide much information about these materials. Backthinning of specimens results in relatively large thin areas for analysis of precipitates, voids, dislocations, depth profiles of implanted species and other features. One of the most critical stages in the backthinning process is the ion milling procedure. Material sputtered during ion milling can redeposit on the back surface thereby contaminating the specimen with impurities such as Fe, Cr, Ni, Mo, Si, etc. These impurities may originate from the specimen, specimen platform and clamping plates, vacuum system, and other components. The contamination may take the form of discrete particles or continuous films [Fig. 1] and compromises many of the compositional and microstructural analyses. A method is being developed to protect the implanted surface by coating it with NaCl prior to backthinning. Impurities which deposit on the continuous NaCl film during ion milling are removed by immersing the specimen in water and floating the contaminants from the specimen as the salt dissolves.


Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


Author(s):  
І. Є. Митропольський ◽  
В. С. Буксар ◽  
С. С. Поп ◽  
І. С. Шароді

Author(s):  
Wentao Qin ◽  
Dorai Iyer ◽  
Jim Morgan ◽  
Carroll Casteel ◽  
Robert Watkins ◽  
...  

Abstract Ni(5 at.%Pt ) films were silicided at a temperature below 400 °C and at 550 °C. The two silicidation temperatures had produced different responses to the subsequent metal etch. Catastrophic removal of the silicide was seen with the low silicidation temperature, while the desired etch selectivity was achieved with the high silicidation temperature. The surface microstructures developed were characterized with TEM and Auger depth profiling. The data correlate with both silicidation temperatures and ultimately the difference in the response to the metal etch. With the high silicidation temperature, there existed a thin Si-oxide film that was close to the surface and embedded with particles which contain metals. This thin film is expected to contribute significantly to the desired etch selectivity. The formation of this layer is interpreted thermodynamically.


2008 ◽  
Author(s):  
James L. Topper ◽  
Binyamin Rubin ◽  
Cody C. Farnell ◽  
Azer P. Yalin

Sign in / Sign up

Export Citation Format

Share Document