scholarly journals Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane

2013 ◽  
Vol 137 (3) ◽  
pp. 859-865 ◽  
Author(s):  
I. Suelves ◽  
R. Utrilla ◽  
D. Torres ◽  
S. de Llobet ◽  
J.L. Pinilla ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Tobias Marquardt ◽  
Sebastian Wendt ◽  
Stephan Kabelac

Economically and ecologically, the thermal decomposition of methane is a promising process for large scale hydrogen production. In this experimental study, the non-catalytic decomposition of methane in the presence of small amounts of carbon dioxide was analyzed. At large scales, natural gas or biomethane are possible feedstocks for the thermal decomposition and can obtain up to 5% carbon dioxide. Gas recycling can increase the amount of secondary components even further. Experiments were conducted in a packed flow reactor at temperatures from 1250 to 1350 K. The residence time and the amounts of carbon dioxide and hydrogen in the feed were varied. A methane conversion of up to 55.4% and a carbon dioxide conversion of up to 44.1% were observed. At 1300K the hydrogen yield was 95% for a feed of methane diluted in nitrogen. If carbon dioxide was added to the feed at up to a tenth with regard to the amount of supplied methane, the hydrogen yield was reduced to 85%. Hydrogen in the feed decreases the reaction rate of the methane decomposition and increases the carbon dioxide conversion.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


2019 ◽  
Vol 467-468 ◽  
pp. 236-248 ◽  
Author(s):  
Manoj Pudukudy ◽  
Zahira Yaakob ◽  
Qingming Jia ◽  
Mohd Sobri Takriff

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 503
Author(s):  
Qiangu Yan ◽  
Timothy Ketelboeter ◽  
Zhiyong Cai

Nickel (Ni)-lignin nanocomposites were synthesized from nickel nitrate and kraft lignin then catalytically graphitized to few-layer graphene-encapsulated nickel nanoparticles (Ni@G). Ni@G nanoparticles were used for catalytic decomposition of methane (CDM) to produce COx-free hydrogen and graphene nanoplatelets. Ni@G showed high catalytic activity for methane decomposition at temperatures of 800 to 900 °C and exhibited long-term stability of 600 min time-on-stream (TOS) without apparent deactivation. The catalytic stability may be attributed to the nickel dispersion in the Ni@G sample. During the CDM reaction process, graphene shells over Ni@G nanoparticles were cracked and peeled off the nickel cores at high temperature. Both the exposed nickel nanoparticles and the cracked graphene shells may participate the CDM reaction, making Ni@G samples highly active for CDM reaction. The vacancy defects and edges in the cracked graphene shells serve as the active sites for methane decomposition. The edges are continuously regenerated by methane molecules through CDM reaction.


Sign in / Sign up

Export Citation Format

Share Document