Role of Ca2+ in the CO2 corrosion behavior and film characteristics of N80 steel and electroless Ni-P coating at high temperature and high pressure

Author(s):  
Jiankuan Li ◽  
Chong Sun ◽  
Morteza Roostaei ◽  
Mahdi Mahmoudi ◽  
Vahidoddin Fattahpour ◽  
...  
Author(s):  
Wenliang Zhang ◽  
Lining Xu ◽  
Shaoqiang Guo ◽  
Lei Zhang ◽  
Minxu Lu ◽  
...  

CO2 corrosion is frequently encountered in oil and gas industry. The search for new sources of oil and gas has pushed the operational activities to harsher environment and this requires new tubing and pipeline materials which can endure tough circumstances. Low alloy steel containing Chromium, which fills the gap between carbon steels and corrosion resistant alloys in terms of cost and corrosion resistance, has aroused significant interest from steel enterprises and scholars. At present, these studies mainly focus on 3%–5%Cr steel, and little study concerns the 2%Cr steel, which is more economic and weldable. In this paper, novel Cr2MoNbTi steel was developed and the microstructure and mechanical properties were studied. Corrosion behavior of the Cr2MoNbTi steel immersed in the CO2-containing solutions, which corresponded to the environment of bottom-of-line corrosion (BLC), was studied using high temperature-high pressure autoclave. In addition, dynamic high temperature-high pressure condensation autoclave was employed to simulate the top-of-line corrosion (TLC) environment and the corrosion behavior of the Cr2MoNbTi steel under wet gas environment was investigated. The composition and morphology of the corrosion scale were characterized by energy dispersive spectroscopy and scanning electron microscopy analyses. The results show that the Cr2MoNbTi steel exhibited uniform corrosion and presented good resistance to CO2 corrosion compared with X65 pipeline steel.


Author(s):  
Harris Prabowo ◽  
Badrul Munir ◽  
Yudha Pratesa ◽  
Johny W. Soedarsono

The scarcity of oil and gas resources made High Pressure and High Temperature (HPHT) reservoir attractive to be developed. The sour service environment gives an additional factor in material selection for HPHT reservoir. Austenitic 28 Cr and super duplex stainless steel 2507 (SS 2507) are proposed to be a potential materials candidate for such conditions. C-ring tests were performed to investigate their corrosion behavior, specifically sulfide stress cracking (SSC) and sulfide stress cracking susceptibility. The C-ring tests were done under 2.55 % H2S (31.48 psia) and 50 % CO2 (617.25 psia). The testing was done in static environment conditions. Regardless of good SSC resistance for both materials, different pitting resistance is seen in both materials. The pitting resistance did not follow the general Pitting Resistance Equivalent Number (PREN), since SS 2507 super duplex (PREN > 40) has more pitting density than 28 Cr austenitic stainless steel (PREN < 40). SS 2507 super duplex pit shape tends to be larger but shallower than 28 Cr austenitic stainless steel. 28 Cr austenitic stainless steel has a smaller pit density, yet deeper and isolated.


2007 ◽  
Vol 70 (9) ◽  
pp. 2168-2171
Author(s):  
JONG-KYUNG LEE ◽  
SARA MOVAHEDI ◽  
STEPHEN E. HARDING ◽  
BERNARD M. MACKEY ◽  
WILLIAM M. WAITES

To find the range of pressure required for effective high-pressure inactivation of bacterial spores and to investigate the role of α/β-type small, acid-soluble proteins (SASP) in spores under pressure treatment, mild heat was combined with pressure (room temperature to 65°C and 100 to 500 MPa) and applied to wild-type and SASP-α−/β− Bacillus subtilis spores. On the one hand, more than 4 log units of wild-type spores were reduced after pressurization at 100 to 500 MPa and 65°C. On the other hand, the number of surviving mutant spores decreased by 2 log units at 100 MPa and by more than 5 log units at 500 MPa. At 500 MPa and 65°C, both wild-type and mutant spore survivor counts were reduced by 5 log units. Interestingly, pressures of 100, 200, and 300 MPa at 65°C inactivated wild-type SASP-α+/β+ spores more than mutant SASP-α−/β− spores, and this was attributed to less pressure-induced germination in SASP-α−/β− spores than in wild-type SASP-α+/β+ spores. However, there was no difference in the pressure resistance between SASP-α+/β+ and SASP-α−/β− spores at 100 MPa and ambient temperature (approximately 22°C) for 30 min. A combination of high pressure and high temperature is very effective for inducing spore germination, and then inactivation of the germinated spore occurs because of the heat treatment. This study showed that α/β-type SASP play a role in spore inactivation by increasing spore germination under 100 to 300 MPa at high temperature.


1998 ◽  
Vol 47 (4) ◽  
pp. 275-279 ◽  
Author(s):  
Isao Sekine ◽  
Hiromi Sato ◽  
Yuka Imatamari ◽  
Naoki Mukaida ◽  
Makoto Yuasa ◽  
...  

Carbon ◽  
2020 ◽  
Vol 167 ◽  
pp. 888-895
Author(s):  
Tian Shao ◽  
Fanglin Lyu ◽  
Xuewen Guo ◽  
Jinqiu Zhang ◽  
Haikun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document