Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10%B4C cast composites

2010 ◽  
Vol 31 (9) ◽  
pp. 4414-4422 ◽  
Author(s):  
H.R. Lashgari ◽  
Sh. Zangeneh ◽  
H. Shahmir ◽  
M. Saghafi ◽  
M. Emamy
2007 ◽  
Vol 534-536 ◽  
pp. 673-676 ◽  
Author(s):  
Ahmet Güral ◽  
Süleyman Tekeli ◽  
Dursun Özyürek ◽  
Metin Gürü

The effect of repeated quenching heat treatment on microstructure and dry sliding wear behavior of low carbon PM steel was investigated. For this purpose, atomized iron powder was mixed with 0.3 % graphite and 1 % Ni powders. The mixed powders were cold pressed and sintered at 1200°C for 30 min under pure Ar gas atmosphere. Some of the sintered specimens were intercritically annealed at 760°C and quenched in water (single quenching). The other sintered specimens were first fully austenized at 890°C and water quenched. These specimens were then intercritically annealed at 760°C and re-quenched in water. The martensite volume fraction in the double quenched specimens was higher than that of the single quenched specimen. Wear tests were carried out on the single and double quenched specimens under dry sliding wear condition using a pin-on-disk type machine at constant load and speed. The experimental results showed that the wear coefficient effectively decreased in the double quenched specimen.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
N. Akaberi ◽  
R. Taghiabadi ◽  
A. Razaghian

The effect of bifilm oxides on the dry sliding wear behavior of Fe-rich (1.5 wt.%) F332 Al–Si alloy under as-cast and T6 heat-treated conditions was investigated. Toward this end, the surface oxides were intentionally incorporated into the molten alloy by surface agitation. The results showed that, after sliding under the applied load of 75 N, due to the presence of bifilms, the wear rate of base (0.2 wt.% Fe) and 1.5 wt.% Fe-containing alloys increased by almost 22% and 14%, respectively. The results also indicated that, despite the positive effect on the hardness, T6 heat treatment adversely affected the wear resistance of alloys made under surface turbulence condition. This negative effect can be attributed to the expansion of bifilms which, during heat treatment, are converted to the potential sites for initiation and propagation of subsurface microcracks. However, the strengthening effect exerted by the thermally modified β-Al5FeSi platelets showed that it can compensate the negative effects of bifilm oxides because it improves the wear rate of 1.5 wt.% Fe-containing F332-T6 alloy by about 5% under the applied load of 75 N.


Sign in / Sign up

Export Citation Format

Share Document