A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique

2014 ◽  
Vol 53 ◽  
pp. 217-225 ◽  
Author(s):  
Mohsen Bahrami ◽  
Kamran Dehghani ◽  
Mohammad Kazem Besharati Givi
Author(s):  
Rahul Kanti Nath ◽  
Vinayak Jha ◽  
Pabitra Maji ◽  
John Deb Barma

AbstractIn almost every industry, polymer materials are in high demand in recent years due to their lightweight and easy formability. However, eco-friendly, cost-efficient and defect-free joining of polymers is a major concern. In this article, a novel approach is taken for friction stir welding of polypropylene by implementing a double-side welding technique. The effect of tool rotational speed on construction and properties of the welded joints are studied. The torque and forces exerted on the tool during double-side welding are compared with single-side welding. Cross-sectional morphology examination using optical and scanning electron microscope reveals defect-free sound welding by double-side weld with uniform material flow. The molecular bonds of the welded specimens are examined by FTIR analysis. The double-side welding technique yields superior joints in terms of tensile strength and flexural strength than the joints obtained by single-side welding.


2007 ◽  
Vol 534-536 ◽  
pp. 789-792 ◽  
Author(s):  
Adem Kurt ◽  
Ilyas Uygur ◽  
Hakan Ates

Friction stir welding technique (FSW) has many advantages in terms of tool design, rotational speed and traveling speed, and can be adjusted in a precise manner. It enables heat input into the system to be controlled. In this study, Aluminum powders were compacted at 350,400 and 450 MPa pressure and sintered at 450 oC temperature for 30 minutes in Ar atmosphere. Sintered powder metal parts were joined to each other by FSW at the speed of 1800 rpm and traveling welding speed 200 mm/min under a constant friction force. The results show that the amount of porosity affects the weldability of powder metallurgy (P/M) parts. Furthermore, the porosity and microstructural evolution of the Aluminum also affected the hardness values of the tested materials.


Author(s):  
Kwanghyun Park ◽  
Bongsuk Kim ◽  
Jun Ni

Ultrasonic assisted friction stir welding (UaFSW) is an hybrid welding technique, where high frequency vibration is superimposed on the movement of a rotating tool. The benefit of using ultrasonic vibration in the FSW process refers to the reduction in the welding force and to the better welding quality. The UaFSW system is being developed and its mechanism needs to be understood using both the experiments and the numerical simulations. In this paper, FE simulations of FSW and UaFSW using ABAQUS/Explicit were carried out to examine plunge forces during the plunge phase of FSW and UaFSW, respectively. First, the simulations of the conventional FSW process were validated. Then, simulation of UaFSW process was performed by imposing sinusoidal horizontal ultrasonic vibrations on the tool.


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


2018 ◽  
Vol 144 ◽  
pp. 03002 ◽  
Author(s):  
Prabhu Subramanya ◽  
Murthy Amar ◽  
Shettigar Arun ◽  
Herbert Mervin ◽  
Rao Shrikantha

Friction stir welding (FSW) is established as one of the prominent welding techniques to join aluminium matrix composites (AMCs). It is a solid state welding process, takes place well below the melting temperature of the material, eliminates the detrimental effects of conventional fusion welding process. Although the process is capable to join AMCs, challenges are still open that need to be fulfill to widen its applications. This paper gives the outline of the friction stir welding technique used to join AMCs. Effect of process variables on the microstructure and mechanical properties of the joints, behavior of reinforcing materials during welding, effect of tool profiles on the joint strength are discussed in detail. Few improvements and direction for future research are also proposed.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 337-350 ◽  
Author(s):  
Dragan Milcic ◽  
Miroslav Mijajlovic ◽  
Nenad Pavlovic ◽  
Mica Vukic ◽  
Dragan Mancic

Friction stir welding is a solid-state welding technique that utilizes thermomechanical influence of the rotating welding tool on parent material resulting in a monolith joint - weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process, mechanical energy is partially transformed into heat. Generated heat affects the temperature of the welding tool and parent material, thus the proposed analytical model for the estimation of the amount of generated heat can be verified by temperature: analytically determined heat is used for numerical estimation of the temperature of parent material and this temperature is compared to the experimentally determined temperature. Numerical solution is estimated using the finite difference method - explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool, etc. The analytical model shows that 60-100% of mechanical power given to the welding tool is transformed into heat, while the comparison of results shows the maximal relative difference between the analytical and experimental temperature of about 10%.


Sign in / Sign up

Export Citation Format

Share Document