The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing

2017 ◽  
Vol 116 ◽  
pp. 411-418 ◽  
Author(s):  
Yen-Ling Kuo ◽  
Shota Horikawa ◽  
Koji Kakehi
2009 ◽  
Vol 289-292 ◽  
pp. 161-166 ◽  
Author(s):  
Benoît Ter-Ovanessian ◽  
Cedric Berrest ◽  
Julien Deleume ◽  
Jean Marc Cloué ◽  
Eric Andrieu

Many studies have emphasized the beneficial effect of niobium on the physical metallurgy of Ni-Cr-Fe alloy 718. Among the different strengthening actions of niobium, such as solid solution hardening and carbide precipitation, the precipitation of niobium with nickel in a strengthening phase γ” (Ni3Nb) during the aging heat treatment has the largest influence on the mechanical properties of alloy 718. The improvement of the niobium distribution and diffusion in the Ni-matrix may allow a more homogenized repartition of γ” precipitates and seems then to be an effective way to upgrade the mechanical properties. As γ” precipitates decompose to the stable δ phase at very long aging times, the study of the effect of carbon, nitrogen and oxygen concentrations on precipitation and dissolution of the δ phase may give information on γ” precipitation and on niobium distribution. It is the purpose of the present work to examine the role that the alloy content of interstitial species plays with the niobium-rich δ phase evolution in alloy 718. Alloy 718 samples were heat treated under hydrogenated argon at 980°C for 0 to 96 hours in order to gradually curb the content of interstitial species by reaction with the reducing atmosphere. Chemical analyses realized by glow discharge mass spectrometry (GDMS) confirmed the reduction of the concentration of these species. Specimens were solution-treated for 1h at 1050°C in an inert atmosphere and furnace cooled. Some of the samples were then aged at 920°C for times ranging from 10 min to 1 hour. The precipitation was measured quantitatively in terms of volume fraction and the morphology of the precipitates was appreciated using scanning electron microscopy (SEM). The differences in the precipitation kinetics and in the microstructure evolution for each interstitial concentration are then discussed.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Author(s):  
Chen Hu ◽  
Malik Haider ◽  
Lukas Hahn ◽  
Mengshi Yang ◽  
Robert Luxenhofer

Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high...


Sign in / Sign up

Export Citation Format

Share Document