scholarly journals Shearing dominated by the coupling of the interfacial misfit and atomic bonding at the FCC (111) semi-coherent interfaces

2020 ◽  
Vol 186 ◽  
pp. 108294 ◽  
Author(s):  
Hui Yang ◽  
Linggang Zhu ◽  
Ruifeng Zhang ◽  
Jian Zhou ◽  
Zhimei Sun
Keyword(s):  
Author(s):  
S.R. Summerfelt ◽  
C.B. Carter

The wustite-spinel interface can be viewed as a model interface because the wustite and spinel can share a common f.c.c. oxygen sublattice such that only the cations distribution changes on crossing the interface. In this study, the interface has been formed by a solid state reaction involving either external or internal oxidation. In systems with very small lattice misfit, very large particles (>lμm) with coherent interfaces have been observed. Previously, the wustite-spinel interface had been observed to facet on {111} planes for MgFe2C4 and along {100} planes for MgAl2C4 and MgCr2O4, the spinel then grows preferentially in the <001> direction. Reasons for these experimental observations have been discussed by Henriksen and Kingery by considering the strain energy. The point-defect chemistry of such solid state reactions has been examined by Schmalzried. Although MgO has been the principal matrix material examined, others such as NiO have also been studied.


1992 ◽  
Vol 291 ◽  
Author(s):  
Ademola Taiwo ◽  
Hong Yan ◽  
Gretchen Kalonji

ABSTRACTThe structure and elastic properties of Ni/Cu and Ni/Au multilayer systems are investigated as a function of the number of Ni monolayers built into the systems. We employed lattice statics simulations with the interatomic potentials described by the embedded-atom method. For the Ni/Cu systems, coherent interfaces and FCC structure are maintained, and no elastic anomaly is found. For the Ni/Au systems, when the Ni layers are thick enough, they undergo a strain-induced phase transformation from FCC to HCP structure. An enhancement of Young’s modulus of these systems is found to be associated with this structural change.


2021 ◽  
Author(s):  
Xiaoli Yang ◽  
Shaodong Sun ◽  
Jie Cui ◽  
Man Yang ◽  
Qing Yang ◽  
...  

Heterojunction engineering is an effective strategy to enhance photodegradation activity via improving the spatial charge separation. However, the poor interface interaction and stability limit the photocatalytic activity of traditional heterojunction....


1989 ◽  
Vol 160 ◽  
Author(s):  
G. Bai ◽  
M-A. Nicolet ◽  
S.-J. Kim ◽  
R.G. Sobers ◽  
J.W. Lee ◽  
...  

AbstractSingle layers of ~ 0.5µm thick InuGa1-uAs1-vPv (0.52 < u < 0.63 and 0.03 < v < 0.16) were grown epitaxially on InP(100) substrates by liquid phase epitaxy at ~ 630°C. The compositions of the films were chosen to yield a constant banndgap of ~ 0.8 eV (λ = 1.55 µm) at room temperature. The lattice mismatch at room temperature between the epitaxial film and the substrate varies from - 4 × 10-3 to + 4 × 10-3. The strain in the films was characterized in air by x-ray double crystal diffractometry with a controllable heating stage from 23°C to ~ 700°C. All the samples have an almost coherent interfaces from 23°C to about ~ 330°C with the lattice mismatch accomodated mainly by the tetragonal distortion of the epitaxial films. In this temperature range, the x-ray strain in the growth direction increases linearly with temperature at a rate of (2.0 ± 0.4) × 10-6/°C and the strain state of the films is reversible. Once the samples are heated above ~ 300°C, a significant irreversible deterioration of the epitaxial films sets in.


2017 ◽  
Vol 27 (5) ◽  
pp. 1435-1461 ◽  
Author(s):  
Silvio Fanzon ◽  
Mariapia Palombaro ◽  
Marcello Ponsiglione

1993 ◽  
Vol 307 ◽  
Author(s):  
Eric E. Fullerton ◽  
S. M. Mini ◽  
A. S. Bommannavar ◽  
C. H. Sowers ◽  
S. N. Ehrlich ◽  
...  

ABSTRACTWe present structural characterizations of a series of sputtered Fe/Nb and V/Nb superlattices by high-angle x-ray diffraction. Diffraction scans were performed with the scattering vector at various angles (χ) with respect to the layers. χ=0° diffraction spectra (normal to the layers) were fitted to a general structural model to determine the (110) lattice strains, interfacial disorder and interdiffusion. χ>0° spectra probe the lattice strain of the individual layers and the in-plane interfacial coherence. Both systems form incoherent interfaces above a critical modulation wavelength (ΛC). At ΛC, the Fe/Nb system undergoes a crystalline-to-amorphous transition while the V/Nb forms in-plane coherent interfaces.


2020 ◽  
Vol 200 ◽  
pp. 686-698 ◽  
Author(s):  
Rongjian Shi ◽  
Yuan Ma ◽  
Zidong Wang ◽  
Lei Gao ◽  
Xu-Sheng Yang ◽  
...  

2000 ◽  
Vol 07 (04) ◽  
pp. 437-446 ◽  
Author(s):  
G. RENAUD

The application of X-rays to the structural characterization of surfaces and interfaces, in situ and in UHV, is discussed on selected examples. Grazing incidence X-ray diffraction is not only a very powerful technique for quantitatively investigating the atomic structure of surfaces and interfaces, but is also very useful for providing information on the interfacial registry for coherent interfaces or on the strain deformation, island and grain sizes for incoherent epilayers.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Ghanshyam Pilania ◽  
Barend J. Thijsse ◽  
Richard G. Hoagland ◽  
Ivan Lazić ◽  
Steven M. Valone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document