scholarly journals A novel, precipitated polybutylene terephthalate feedstock material for powder bed fusion of polymers (PBF): Material development and initial PBF processability

2021 ◽  
Vol 197 ◽  
pp. 109265
Author(s):  
Maximilian A. Dechet ◽  
Juan S. Gómez Bonilla ◽  
Moritz Grünewald ◽  
Kevin Popp ◽  
Johannes Rudloff ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1535 ◽  
Author(s):  
Maximilian A. Dechet ◽  
Ina Baumeister ◽  
Jochen Schmidt

In this study, the development of a polyoxymethylene (POM) feedstock material for the powder bed fusion (PBF) of polymers is outlined. POM particles are obtained via liquid-liquid phase separation (LLPS) and precipitation, also known as the solution-dissolution process. In order to identify suitable POM solvent systems for LLPS and precipitation, in the first step, a solvent screening based on solubility parameters was performed, and acetophenone and triacetin were identified as the most promising suitable moderate solvents for POM. Cloud point curves were measured for both solvents to derive suitable temperature profiles and polymer concentrations for the solution-dissolution process. In the next step, important process parameters, namely POM concentration and stirring conditions, were studied to elucidate their effect on the product’s properties. The product particles obtained from both aforementioned solvents were characterized with regard to their morphology and size distribution, as well as their thermal properties (cf. the PBF processing window) and compared to a cryo-milled POM PBF feedstock. Both solvents allowed for precipitation of POM particles of an appropriate size distribution for PBF for polymer concentrations of at least up to 20 wt.%. Finally, a larger powder batch for application in the PBF process was produced by precipitation from the preferred solvent acetophenone. This POM powder was further analyzed concerning its flowability, Hausner ratio, and mass-specific surface area. Finally, test specimens, namely a complex gyroid body and a detailed ornament, were successfully manufactured from this feedstock powder showing appropriate bulk solid and thermal properties to demonstrate PBF processability. In summary, a processable and suitable POM PBF feedstock could be developed based on the non-mechanical solution dissolution process, which, to the authors’ best knowledge, has not been reported in previous studies.


2020 ◽  
Vol 10 (24) ◽  
pp. 8869
Author(s):  
Martin Jäcklein ◽  
Aron Pfaff ◽  
Klaus Hoschke

The additive manufacturing technique laser powder bed fusion (L-PBF) opens up potential to process metal matrix composites (MMCs) with new material pairings free from limitations of conventional production techniques. In this work, we present a study on MMC material development using L-PBF. The generated composite material is composed of an X3NiCoMoTi 18-9-5 steel as matrix and spherical tungsten particles as filler material. A Design of Experiment (DoE)-based process parameter adaption leads to an Archimedean density close to the theoretical density in the case of 60 vol% tungsten content. A maximum ultimate tensile strength of 836 MPa is obtained. A failure analysis reveals a stable bonding of the tungsten particles to the steel matrix. This encourages the investigation of further material combinations. An additional heat treatment of the MMC indicates the potential to design specific material properties; it also highlights the complexity of such treatments.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3312
Author(s):  
Tim Hupfeld ◽  
Alexander Sommereyns ◽  
Farbod Riahi ◽  
Carlos Doñate-Buendía ◽  
Stan Gann ◽  
...  

Driven by the rapid development of additive manufacturing technologies and the trend towards mass customization, the development of new feedstock materials has become a key aspect. Additivation of the feedstock with nanoparticles is a possible route for tailoring the feedstock material to the printing process and to modify the properties of the printed parts. This study demonstrates the colloidal additivation of PA12 powder with laser-synthesized carbon nanoparticles at >95% yield, focusing on the dispersion of the nanoparticles on the polymer microparticle surface at nanoparticle loadings below 0.05 vol%. In addition to the descriptors “wt%” and “vol%”, the descriptor “surf%” is discussed for characterizing the quantity and quality of nanoparticle loading based on scanning electron microscopy. The functionalized powders are further characterized by confocal dark field scattering, differential scanning calorimetry, powder rheology measurements (avalanche angle and Hausner ratio), and regarding their processability in laser powder bed fusion (PBF-LB). We find that heterogeneous nucleation is induced even at a nanoparticle loading of just 0.005 vol%. Finally, analysis of the effect of low nanoparticle loadings on the final parts’ microstructure by polarization microscopy shows a nanoparticle loading-dependent change of the dimensions of the lamellar microstructures within the printed part.


2019 ◽  
Author(s):  
Yufan Zhao ◽  
Yuichiro Koizumi ◽  
Kenta Aoyagi ◽  
Daixiu Wei ◽  
Kenta Yamanaka ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3367-3379 ◽  
Author(s):  
Shahriar Imani Shahabad ◽  
Zhidong Zhang ◽  
Ali Keshavarzkermani ◽  
Usman Ali ◽  
Yahya Mahmoodkhani ◽  
...  

Author(s):  
Juan S. Gómez Bonilla ◽  
Björn Düsenberg ◽  
Franz Lanyi ◽  
Patrik Schmuki ◽  
Dirk W. Schubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document