scholarly journals Quantification of nano-scale interface structures to guide mechanistic modelling of WC grain coarsening inhibition in V-doped hard metals

2021 ◽  
pp. 109825
Author(s):  
Ahmet Bahadir Yildiz ◽  
R. Prasath Babu ◽  
Manon Bonvalet-Rolland ◽  
Sebastian Busch ◽  
Vasyl Ryukhtin ◽  
...  
Author(s):  
M.J. Witcomb ◽  
U. Dahmen ◽  
K.H. Westmacott

Cu-Cr age-hardening alloys are of interest as a model system for the investigation of fcc/bcc interface structures. Several past studies have investigated the morphology and interface structure of Cr precipitates in a Cu matrix (1-3) and good success has been achieved in understanding the crystallography and strain contrast of small needle-shaped precipitates. The present study investigates the effect of small amounts of phosphorous on the precipitation behavior of Cu-Cr alloys.The same Cu-0.3% Cr alloy as was used in earlier work was rolled to a thickness of 150 μm, solution treated in vacuum at 1050°C for 1h followed by quenching and annealing for various times at 820 and 863°C.Two laths and their corresponding diffraction patterns in an alloy aged 2h at 820°C are shown in correct relative orientation in Fig. 1. To within the limit of accuracy of the diffraction patterns the orientation relationship was that of Kurdjumov-Sachs (KS), i.e. parallel close-packed planes and directions.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


Author(s):  
Lisa A. Tietz ◽  
Scott R. Summerfelt ◽  
C. Barry Carter

Defects in thin films are often introduced at the substrate-film interface during the early stages of growth. The interface structures of semiconductor heterojunctions have been extensively studied because of the electrical activity of defects in these materials. Much less attention has been paid to the structure of oxide-oxide heterojunctions. In this study, the structures of the interfaces formed between hematite (α-Fe2O3) and two orientations of sapphire (α-Al2O3) are examined in relationship to the defects introduced into the hematite film. In such heterojunctions, the oxygen sublattice is expected to have a strong influence on the epitaxy; however, defects which involve only the cation sublattice may be introduced at the interface with little increase in interface energy.Oxide heterojunctions were produced by depositing small quantities of hematite directly onto electrontransparent sapphire substrates using low-pressure chemical vapor deposition. Prior to deposition, the ionthinned substrates were chemically cleaned and annealed at 1400°C to give “clean”, crystalline surfaces. Hematite was formed by the reaction of FeCl3 vapor with water vapor at 1150°C and 1-2 Torr. The growth of the hematite and the interface structures formed on (0001) and {102} substrates have been studied by bright-field, strong- and weak-beam dark-field imaging techniques.


2017 ◽  
Vol 76 (10) ◽  
pp. 865-871
Author(s):  
V. P. Makhniy ◽  
P. P. Horley ◽  
A. M. Slyotov

Author(s):  
Dong Meng ◽  
Amir Afshar ◽  
Randa Bassou ◽  
David S. Thompson ◽  
Jing Zong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document