Low Cost and Highly Sensitive Flexible Pressure Sensor Based on Branched Micro-structures

2021 ◽  
pp. 130977
Author(s):  
Haowei Zhang ◽  
Cheng Li ◽  
Wei Ning ◽  
Hongyun Chen
2018 ◽  
Vol 6 (24) ◽  
pp. 6423-6428 ◽  
Author(s):  
Bingxin Wang ◽  
Ting Shi ◽  
Yanru Zhang ◽  
Changzhou Chen ◽  
Qiang Li ◽  
...  

The development of flexible sensors with low cost, facile preparation and good reproducibility is of profound significance for wearable electronics and intelligent systems.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1499 ◽  
Author(s):  
Young Jung ◽  
Kyung Kuk Jung ◽  
Dong Hwan Kim ◽  
Dong Hwa Kwak ◽  
Jong Soo Ko

We developed a simple, low-cost process to fabricate a flexible pressure sensor with linear sensitivity by using a porous carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite structure (CPCS). The working principle of this pressure sensor is based on the change in electrical resistance caused by the contact/non-contact of the CNT tip on the surface of the pores under pressure. The mechanical and electrical properties of the CPCSs could be quantitatively controlled by adjusting the concentration of CNTs. The fabricated flexible pressure sensor showed linear sensitivity and excellent performance with regard to repeatability, hysteresis, and reliability. Furthermore, we showed that the sensor could be applied for human motion detection, even when attached to curved surfaces.


2015 ◽  
Vol 748 ◽  
pp. 1-4 ◽  
Author(s):  
Li Xin Mo ◽  
Yu Qun Hou ◽  
Qing Bin Zhai ◽  
Wen Guan Zhang ◽  
Lu Hai Li

The novel flexible pressure sensor with skin-like stretchability and sensibility has attracted tremendous attention in academic and industrial world in recent years. And it also has demonstrated great potential in the applications of electronic skin and wearable devices. It is significant and challenging to develop a highly sensitive flexible pressure sensor with a simple, low energy consuming and low cost method. In this paper, the silver nanowires (AgNWs) as electrode material were synthesized by polyol process. The polydimethylsiloxane (PDMS) was chosen as a flexible substrate and polyimide (PI) film as dielectric layer. The AgNWs based electrode was prepared in two methods. One is coating the AgNWs on photographic paper followed by in situ PDMS curing. Another one is suction filtration of the AgNWs suspension followed by glass slide transfer and PDMS curing. Then the capacitive pressure sensor was packaged in a sandwich structure with two face to face electrodes and a PI film in the middle. The sensitivity of the sensor as well as the micro-structure of the electrodes was compared and studied. The results indicate that the roughness of the electrode based on AgNWs/PDMS micro-structure plays an important role in the sensitivity of sensor. The as-prepared flexible pressure sensor demonstrates high sensitivity of 0.65kPa-1. In addition, the fabrication method is simple, low energy consuming and low cost, which has great potential in the detection of pulse, heart rate, sound vibration and other tiny pressure.


2014 ◽  
Vol 26 (1) ◽  
pp. 116-119
Author(s):  
Kenneth Shinozuka ◽  

This paper presents an innovative pressure sensor systemembedded in a sock, which has a number of health care applications. One of these is the low-cost, reliable detection of the bed-departure of Alzheimer’s patients, an increasingly common problem that causes significant stress to caregivers. The system comprises a pressure sensor embedded in a sock and a coin battery-powered microcontroller containing a radiofrequency module. Once the user wanders out of bed and steps onto the floor, the sensor on the sock will immediately detect the pressure caused by his or her body weight and will wirelessly trigger an audible sound in a caregiver’s monitoring unit, which can be a Smartphone, tablet, or dedicated monitor. Furthermore, the pressure sensor and the microcontroller can be combined into one re-attachable unit, which can be stuck conveniently to the ball or heel of the user’s foot or any ordinary sock, slipper or shoe. In addition, the system can function as a highly accurate pedometer that is useful for monitoring the user’s health by tracking changes in his or her gait characteristics. In this study, a prototype sensor sock was developed that included an ultra-thin flexible pressure sensor, microcontroller, Bluetooth low energy module, and control software. The efficacy of the sensor sock in detecting and alerting patients’ wandering has been demonstrated.


2018 ◽  
Vol 39 (7) ◽  
pp. 1073-1076 ◽  
Author(s):  
Chen Xin ◽  
Longlong Chen ◽  
Tongkuai Li ◽  
Zhihan Zhang ◽  
Tingting Zhao ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1247 ◽  
Author(s):  
Chien Khong Duc ◽  
Van-Phuc Hoang ◽  
Duy Tien Nguyen ◽  
Toan Thanh Dao

Detection of vehicles on the road can contribute to the establishment of an intelligent transportation management system to allow smooth transportation and the reduction of road accidents. Thus far, an efficient and low-cost polymer flexible pressure sensor for vehicle detection is lacking. This paper presents a flexible sensor for vehicle sensing and demonstrates a wireless system for monitoring vehicles on the road. A vehicle sensor was fabricated by sandwiching a polyurethane material between aluminum top/bottom electrodes. The sensing mechanism was based on changes in capacitance due to variation in the distance between the two electrodes at an applied external pressure. A clear response against a pressure load of 0.65 Mpa was observed, which is the same pressure as that of the car tire area in contact with the road. Significantly, the sensor was easy to embed on the road line due to its mechanical flexibility and large size. A field test was carried out by embedding the sensor on the road and crossing the sensor with a car. Moreover, the signal displayed on the tablet indicated that the sensing system can be used for wireless detection of the axle, speed, or weight of the vehicle on the road. The findings suggest that the flexible pressure sensor is a promising tool for use as a low-cost vehicle detector in future intelligent transportation management.


Sign in / Sign up

Export Citation Format

Share Document