scholarly journals A Low-Cost, Flexible Pressure Capacitor Sensor Using Polyurethane for Wireless Vehicle Detection

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1247 ◽  
Author(s):  
Chien Khong Duc ◽  
Van-Phuc Hoang ◽  
Duy Tien Nguyen ◽  
Toan Thanh Dao

Detection of vehicles on the road can contribute to the establishment of an intelligent transportation management system to allow smooth transportation and the reduction of road accidents. Thus far, an efficient and low-cost polymer flexible pressure sensor for vehicle detection is lacking. This paper presents a flexible sensor for vehicle sensing and demonstrates a wireless system for monitoring vehicles on the road. A vehicle sensor was fabricated by sandwiching a polyurethane material between aluminum top/bottom electrodes. The sensing mechanism was based on changes in capacitance due to variation in the distance between the two electrodes at an applied external pressure. A clear response against a pressure load of 0.65 Mpa was observed, which is the same pressure as that of the car tire area in contact with the road. Significantly, the sensor was easy to embed on the road line due to its mechanical flexibility and large size. A field test was carried out by embedding the sensor on the road and crossing the sensor with a car. Moreover, the signal displayed on the tablet indicated that the sensing system can be used for wireless detection of the axle, speed, or weight of the vehicle on the road. The findings suggest that the flexible pressure sensor is a promising tool for use as a low-cost vehicle detector in future intelligent transportation management.

2013 ◽  
Vol 411-414 ◽  
pp. 1459-1464
Author(s):  
Yun Long Li ◽  
Chun Xin Wang ◽  
Xiao Li Zhou ◽  
Huan Juan Wang ◽  
Ya Kun Liu

Vehicle Detection System plays a basic role in the field of intelligent transportation, and is the cornerstone of constructing modern intelligent transportation system. This paper presents a new vehicle detection algorithm using WSN that called the adaptive state machine. The algorithm can adaptively update the threshold and baseline; use the state machine to achieve the aim of the accurate and efficient vehicle detection. It can be used for the detection of road traffic flow, and can be used in large parking vehicle guidance system. On the road, we have deployed 76 Sensor Nodes to evaluate the performance. We observe the accurate of the road vehicle detection rate of vehicle detection system is nearly 98%.


Author(s):  
Manolo Dulva Hina ◽  
Hongyu Guan ◽  
Assia Soukane ◽  
Amar Ramdane-Cherif

Advanced driving assistance system (ADAS) is an electronic system that helps the driver navigate roads safely. A typical ADAS, however, is suited to specific brands of vehicle and, due to proprietary restrictions, has non-extendable features. Project CASA is an alternative, low-cost generic ADAS. It is an app deployable on smartphone or tablet. The real-time data needed by the app to make sense of its environment are stored in the vehicle or on the cloud, and are accessible as web services. They are used to determine the current driving context, and, if needed, decide actions to prevent an accident or keep road navigation safe. Project CASA is an undertaking of a consortium of industrial and academic partners. A use case scenario is tested in the laboratory (virtual) and on the road (actual) to validate the appropriateness of CASA. It is a contribution to safe driving. CASA’s contribution also lies in its approach in the semantic modeling of the context of the environment, the vehicle and the driver, and on the modeling of rules for fusion of data and fission process yielding an action to be implemented. In addition, CASA proposes a secured means of transmitting data using light, via light fidelity (LiFi), itself an alternative means of wireless vehicle–smartphone communication.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1499 ◽  
Author(s):  
Young Jung ◽  
Kyung Kuk Jung ◽  
Dong Hwan Kim ◽  
Dong Hwa Kwak ◽  
Jong Soo Ko

We developed a simple, low-cost process to fabricate a flexible pressure sensor with linear sensitivity by using a porous carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite structure (CPCS). The working principle of this pressure sensor is based on the change in electrical resistance caused by the contact/non-contact of the CNT tip on the surface of the pores under pressure. The mechanical and electrical properties of the CPCSs could be quantitatively controlled by adjusting the concentration of CNTs. The fabricated flexible pressure sensor showed linear sensitivity and excellent performance with regard to repeatability, hysteresis, and reliability. Furthermore, we showed that the sensor could be applied for human motion detection, even when attached to curved surfaces.


Author(s):  
Zhenyao Zhang ◽  
Jianying Zheng ◽  
Hao Xu ◽  
Xiang Wang

The problem of traffic safety has become increasingly prominent owing to the increase in the number of cars. Traffic accidents often occur in an instant, which makes it necessary to obtain traffic data with high resolution. High-resolution micro traffic data (HRMTD) indicates that the spatial resolution reaches the centimeter level and that the temporal resolution reaches the millisecond level. The position, direction, speed, and acceleration of objects on the road can be extracted with HRMTD. In this paper, a LiDAR sensor was installed at the roadside for data collection. An adjacent-frame fusion method for vehicle detection and tracking in complex traffic circumstances is presented. Compared with the previous research, objects can be detected and tracked without object model extraction or a bounding box description. In addition, problems caused by occlusion can be improved using adjacent frames fusion in the vehicle detection and tracking algorithms in this paper. The data processing procedure are as follows: selection of area of interest, ground point removal, vehicle clustering, and vehicle tracking. The algorithm has been tested at different sites (in Reno and Suzhou), and the results demonstrate that the algorithm can perform well in both simple and complex application scenarios.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 341 ◽  
Author(s):  
Miha Ambrož ◽  
Uroš Hudomalj ◽  
Alexander Marinšek ◽  
Roman Kamnik

Measuring friction between the tyres of a vehicle and the road, often and on as many locations on the road network as possible, can be a valuable tool for ensuring traffic safety. Rather than by using specialised equipment for sequential measurements, this can be achieved by using several low-cost measuring devices on vehicles that travel on the road network as part of their daily assignments. The presented work proves the hypothesis that a low cost measuring device can be built and can provide measurement results comparable to those obtained from expensive specialised measuring devices. As a proof of concept, two copies of a prototype device, based on the Raspberry Pi single-board computer, have been developed, built and tested. They use accelerometers to measure vehicle braking deceleration and include a global positioning receiver for obtaining the geolocation of each test. They run custom-developed data acquisition software on the Linux operating system and provide automatic measurement data transfer to a server. The operation is controlled by an intuitive user interface consisting of two illuminated physical pushbuttons. The results show that for braking tests and friction coefficient measurements the developed prototypes compare favourably to a widely used professional vehicle performance computer.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5044
Author(s):  
Gerd Christian Krizek ◽  
Rene Hausleitner ◽  
Laura Böhme ◽  
Cristina Olaverri-Monreal

Driver disregard for the minimum safety distance increases the probability of rear-end collisions. In order to contribute to active safety on the road, we propose in this work a low-cost Forward Collision Warning system that captures and processes images. Using cameras located in the rear section of a leading vehicle, this system serves the purpose of discouraging tailgating behavior from the vehicle driving behind. We perform in this paper the pertinent field tests to assess system performance, focusing on the calculated distance from the processing of images and the error margins in a straight line, as well as in a curve. Based on the evaluation results, the current version of the Tailigator can be used at speeds up to 50 km per hour without any restrictions. The measurements showed similar characteristics both on the straight line and in the curve. At close distances, between 3 and 5 m, the values deviated from the real value. At average distances, around 10 to 15 m, the Tailigator achieved the best results. From distances higher than 20 m, the deviations increased steadily with the distance. We contribute to the state of the art with an innovative low-cost system to identify tailgating behavior and raise awareness, which works independently of the rear vehicle’s communication capabilities or equipment.


2015 ◽  
Vol 748 ◽  
pp. 1-4 ◽  
Author(s):  
Li Xin Mo ◽  
Yu Qun Hou ◽  
Qing Bin Zhai ◽  
Wen Guan Zhang ◽  
Lu Hai Li

The novel flexible pressure sensor with skin-like stretchability and sensibility has attracted tremendous attention in academic and industrial world in recent years. And it also has demonstrated great potential in the applications of electronic skin and wearable devices. It is significant and challenging to develop a highly sensitive flexible pressure sensor with a simple, low energy consuming and low cost method. In this paper, the silver nanowires (AgNWs) as electrode material were synthesized by polyol process. The polydimethylsiloxane (PDMS) was chosen as a flexible substrate and polyimide (PI) film as dielectric layer. The AgNWs based electrode was prepared in two methods. One is coating the AgNWs on photographic paper followed by in situ PDMS curing. Another one is suction filtration of the AgNWs suspension followed by glass slide transfer and PDMS curing. Then the capacitive pressure sensor was packaged in a sandwich structure with two face to face electrodes and a PI film in the middle. The sensitivity of the sensor as well as the micro-structure of the electrodes was compared and studied. The results indicate that the roughness of the electrode based on AgNWs/PDMS micro-structure plays an important role in the sensitivity of sensor. The as-prepared flexible pressure sensor demonstrates high sensitivity of 0.65kPa-1. In addition, the fabrication method is simple, low energy consuming and low cost, which has great potential in the detection of pulse, heart rate, sound vibration and other tiny pressure.


2020 ◽  
Author(s):  
Baoshan Wang ◽  
Xiangfang Zeng ◽  
Jun Yang ◽  
Yuansheng Zhang ◽  
Zhenghong Song ◽  
...  

<p>Recently large-volume airgun arrays have been used to explore and monitor the subsurface structure. The airgun array can generate highly repeatable seismic signals, which can be traced to more than 200 km. And the airgun source can be ignited every 10 minutes. The airgun source makes it possible to precisely monitor subsurface changes at large scale. The spatial resolution of airgun monitoring is poor subjecting to the receiver distribution. The distributed acoustic sensing (DAS) technique provides a strategy for low-cost and high-density seismic observations. Two experiments combing DAS technique and airgun source were conducted at two sites with different settings. At the first site, a telecommunication fiber-optic cable in urban area was used. After moderate stacking, the airgun signal emerges on the 30-km DAS array at about 9 km epicentral distance. In the second experiment, a 5-km cable was deployed from the airgun source to about 2 km away. About 800-m cable was frozen into the ice above the air-gun, the rest cable was cemented on the road crossing through a fault. And the airgun has been fired continuously for more than 48 hours with one-hour interval. On the stacking multiple shots’ records, the wavefield in fault zone emerges too. These two experiments demonstrate the feasibility of using various fiber-optic cables as dense array to acquire air-gun signal in different environments and to monitor the subsurface changes.</p>


2014 ◽  
Vol 26 (1) ◽  
pp. 116-119
Author(s):  
Kenneth Shinozuka ◽  

This paper presents an innovative pressure sensor systemembedded in a sock, which has a number of health care applications. One of these is the low-cost, reliable detection of the bed-departure of Alzheimer’s patients, an increasingly common problem that causes significant stress to caregivers. The system comprises a pressure sensor embedded in a sock and a coin battery-powered microcontroller containing a radiofrequency module. Once the user wanders out of bed and steps onto the floor, the sensor on the sock will immediately detect the pressure caused by his or her body weight and will wirelessly trigger an audible sound in a caregiver’s monitoring unit, which can be a Smartphone, tablet, or dedicated monitor. Furthermore, the pressure sensor and the microcontroller can be combined into one re-attachable unit, which can be stuck conveniently to the ball or heel of the user’s foot or any ordinary sock, slipper or shoe. In addition, the system can function as a highly accurate pedometer that is useful for monitoring the user’s health by tracking changes in his or her gait characteristics. In this study, a prototype sensor sock was developed that included an ultra-thin flexible pressure sensor, microcontroller, Bluetooth low energy module, and control software. The efficacy of the sensor sock in detecting and alerting patients’ wandering has been demonstrated.


Author(s):  
A. H. Nourbakhsh ◽  
M. R. Delavar ◽  
M. Jadidi ◽  
B. Moshiri

Abstract. Intelligent Transportation Systems (ITS) is one of the main components of a smart city. ITS have several purposes including the increase of the safety and comfort of the passengers and the reduction of the road accidents. ITS can enhance safety in three modes before, within and after the collision by preventing accident via assistive system, sensing the collision situation and calculating the time of the collision and providing the emergency response in a timely manner. The main objective of this paper is related to the smart transportation services which can be provided at the time of the collision and after the accident. After the accident, it takes several minutes to hours for the person to contact the emergency department. If an accident takes place for a vehicle in a remote area, this time increases and that may cause the loss of life. In addition, determination of the exact location of the accident is difficult by the emergency centres. That leads to the possibility of erroneous responder act in dispatching the rescue team from the nearest hospital. A new assistive intelligent system is designed in this regard that includes both software and hardware units. Hardware unit is used as an On-Board Unit (OBU), which consists of GPS, GPRS and gyroscope modules. Once OBU detects the accident, a notification system designed and connected to OBU will sent an alarm to the server. The distance to the nearest emergency center is calculated using Dijkstra algorithm. Then the server sends a request for assistance to the nearest emergency centre. The proposed system is developed and tested at local laboratory conditions. The results show that this system can reduce Ambulance Arrival Time (AAT). The preliminary results and architecture of the system have been presented. The inclination angle determined by the proposed system along with the car position identified by the installed GPS sensor assists the crash/accident warning part of the system to send a help request to the nearest road emergency centre. These results verified that the probability of having a remote and smart car crash/accident decision support system using the proposed system has been improved compared to that of the existing systems.


Sign in / Sign up

Export Citation Format

Share Document