Projectile’s mass-dependent nanopatterning of Si (100) for different incidence angles

2021 ◽  
pp. 131348
Author(s):  
Vandana ◽  
Preeti Chhokkar ◽  
Sushil Kumar ◽  
Vinamrita Singh ◽  
Ratnesh K Pandey ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Peter Kraus ◽  
Daniel A. Obenchain ◽  
Sven Herbers ◽  
Dennis Wachsmuth ◽  
Irmgard Frank ◽  
...  

<div>The Xe···OCS complex is studied using microwave spectroscopy. Nine isotopologues are measured, and a mass-dependent rm(2) structure is presented. The experiments are supported with a wide array of calculations, including CCSD(T), SAPT, as well as double-hybrid DFT. Trends in the structures of six Rg···OCS complexes (He, Ne, Ar, Kr, Xe, and Hg) are investigated, with particular attention to the deformation of the OCS monomer and relativistic effects. The experimental near-equilibrium structure of Xe···OCS can be predicted to within 11 milliangstrom in the Xe···C distance by correlated wavefunction theory.<br></div>


2020 ◽  
Author(s):  
Peter Kraus ◽  
Daniel A. Obenchain ◽  
Sven Herbers ◽  
Dennis Wachsmuth ◽  
Irmgard Frank ◽  
...  

<div>The Xe···OCS complex is studied using microwave spectroscopy. Nine isotopologues are measured, and a mass-dependent rm(2) structure is presented. The experiments are supported with a wide array of calculations, including CCSD(T), SAPT, as well as double-hybrid DFT. Trends in the structures of six Rg···OCS complexes (He, Ne, Ar, Kr, Xe, and Hg) are investigated, with particular attention to the deformation of the OCS monomer and relativistic effects. The experimental near-equilibrium structure of Xe···OCS can be predicted to within 11 milliangstrom in the Xe···C distance by correlated wavefunction theory.<br></div>


2012 ◽  
Vol 8 (S290) ◽  
pp. 259-260 ◽  
Author(s):  
Yan-Rong Li ◽  
Jian-Min Wang ◽  
Luis C. Ho

AbstractWe derive the mass function of supermassive black holes (SMBHs) over the redshift range 0 > z ≲ 2, using the latest deep luminosity and mass functions of field galaxies. Applying this mass function, combined with the bolometric luminosity function of active galactic nuclei (AGNs), into the the continuity equation of SMBH number density, we explicitly obtain the mass-dependent cosmological evolution of the radiative efficiency for accretion. We suggest that the accretion history of SMBHs and their spins evolve in two distinct regimes: an early phase of prolonged accretion, plausibly driven by major mergers, during which the black hole spins up, then switching to a period of random, episodic accretion, governed by minor mergers and internal secular processes, during which the hole spins down. The transition epoch depends on mass, mirroring other evidence for “cosmic downsizing” in the AGN population.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. K. Bahar ◽  
F. Yasuk

Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.


2017 ◽  
Vol 32 (5) ◽  
pp. 951-966 ◽  
Author(s):  
John W. Olesik ◽  
Shi Jiao

Comprehensive characterization of ICP-MS matrix effects as a function of analyte mass, matrix mass, lens voltage and nebulizer gas flow rate was carried out.


Langmuir ◽  
2007 ◽  
Vol 23 (5) ◽  
pp. 2546-2554 ◽  
Author(s):  
Bingbing Li ◽  
Alan R. Esker

2011 ◽  
Vol 11 (19) ◽  
pp. 10293-10303 ◽  
Author(s):  
S. Hattori ◽  
S. O. Danielache ◽  
M. S. Johnson ◽  
J. A. Schmidt ◽  
H. G. Kjaergaard ◽  
...  

Abstract. We report measurements of the ultraviolet absorption cross sections of OC32S, OC33S, OC34S and O13CS from 195 to 260 nm. The OCS isotopologues were synthesized from isotopically-enriched elemental sulfur by reaction with carbon monoxide. The measured cross section of OC32S is consistent with literature spectra recorded using natural abundance samples. Relative to the spectrum of the most abundant isotopologue, substitution of heavier rare isotopes has two effects. First, as predicted by the reflection principle, the Gaussian-based absorption envelope becomes slightly narrower and blue-shifted. Second, as predicted by Franck-Condon considerations, the weak vibrational structure is red-shifted. Sulfur isotopic fractionation constants (33ε, 34ε) as a function of wavelength are not highly structured, and tend to be close to zero on average on the high energy side and negative on the low energy side. The integrated photolysis rate of each isotopologue at 20 km, the approximate altitude at which most OCS photolysis occurs, was calculated. Sulfur isotopic fractionation constants at 20 km altitude are (−3.7 ± 4.5)‰ and (1.1 ± 4.2)‰ for 33ε and 34ε, respectively, which is inconsistent with the previously estimated large fractionation of over 73‰ in 34ε. This demonstrates that OCS photolysis does not produce sulfur isotopic fractionation of more than ca. 5‰, suggesting OCS may indeed be a significant source of background stratospheric sulfate aerosols. Finally, the predicted isotopic fractionation constant for 33S excess (33E) in OCS photolysis is (−4.2 ± 6.6)‰, and thus photolysis of OCS is not expected to be the source of the non-mass-dependent signature observed in modern and Archaean samples.


2017 ◽  
Vol 1530 ◽  
pp. 171-175 ◽  
Author(s):  
Huian Liu ◽  
Guy Raffin ◽  
Guillaume Trutt ◽  
Jérôme Randon

Sign in / Sign up

Export Citation Format

Share Document