Experimental study on the effect of welding parameters and tool pin profiles on the IS:65032 aluminum alloy FSW joints

2017 ◽  
Vol 4 (2) ◽  
pp. 1394-1404 ◽  
Author(s):  
M.S. Srinivasa Rao ◽  
B.V.R. Ravi Kumar ◽  
M. Manzoor Hussain
2015 ◽  
Vol 766-767 ◽  
pp. 701-704
Author(s):  
R. Ramesh ◽  
S. Suresh Kumar ◽  
R.V. Srinivasan

Aluminum alloys exhibit poor weldability by conventional fusion welding process. The heat treatable aluminum alloy AA2014 is extensively used in the aircraft industry because it has good ductility and high strength to weight ratio. In this paper the effects of welding parameters and tool profile on the mechanical properties of friction stir welded butt joints of dissimilar aluminum alloy sheets AA6082 and AA2014. The process parameters such as rotational speed, transverse speed and axial forces were considered. The effect of parameters on weld quality was analyzed. Hardness and tensile tests are carried out at room temperature to examine the mechanical properties of the welded joints. The joints produced with straight square tool pin profile have higher ultimate tensile strength, whereas the straight cylindrical tool pin profile results in lower tensile strength.


2014 ◽  
Vol 592-594 ◽  
pp. 216-223
Author(s):  
Nallavelli Ramesh ◽  
K. Palaksha Reddy

Aluminum alloys are mostly used for high strength structural applications utilized in aircraft structure, trucks body, military vehicles, bridges and weapons manufacture. Conventional fusion welding of aluminum alloy produces porosity and hot cracks in the welded joint due to incorrect selection of consumables and parameters, which may lead to lower weld toughness and defects in the mechanical properties. The mostly adopted method for welding AA 2014-T6 is solid state joining process. Friction stir welding (FSW) is an emerging solid state of joining process which avoids bulk melting of the basic material, hot cracking and porosity. The welding parameters and tool pin profile play a major role in deciding weld quality. In this investigation, an attempt has been made to understand the various influences of tool rotational speed, welding speed and pin profile of the tool on friction stir processed (FSP) zone formation in joining of AA2014 aluminum alloy. High Carbon High Chromium steel tool of plain cylindrical pin profile is used to fabricate the joints. The average grey relation grade for each level of each factor are calculated and it was found that the optimal settings of the levels of factors Tool rotation speed (A), Weld speed (B) and Tilt angle (C) are A1-B3-C3. The findings from these investigations will be presented and discussed.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2016 ◽  
Vol 25 (3) ◽  
pp. 1228-1236 ◽  
Author(s):  
S. D. Ji ◽  
X. C. Meng ◽  
Z. W. Li ◽  
L. Ma ◽  
S. S. Gao

Sign in / Sign up

Export Citation Format

Share Document