Effect of Process Parameters on Mechanical Characterization of Dissimilar Friction Stir Welded Aluminium Alloys

2015 ◽  
Vol 766-767 ◽  
pp. 701-704
Author(s):  
R. Ramesh ◽  
S. Suresh Kumar ◽  
R.V. Srinivasan

Aluminum alloys exhibit poor weldability by conventional fusion welding process. The heat treatable aluminum alloy AA2014 is extensively used in the aircraft industry because it has good ductility and high strength to weight ratio. In this paper the effects of welding parameters and tool profile on the mechanical properties of friction stir welded butt joints of dissimilar aluminum alloy sheets AA6082 and AA2014. The process parameters such as rotational speed, transverse speed and axial forces were considered. The effect of parameters on weld quality was analyzed. Hardness and tensile tests are carried out at room temperature to examine the mechanical properties of the welded joints. The joints produced with straight square tool pin profile have higher ultimate tensile strength, whereas the straight cylindrical tool pin profile results in lower tensile strength.

Author(s):  
Sanjay Kumar ◽  
Sudhir Kumar ◽  
Ajay Kumar

The friction stir welding is a pioneering solid-state metal joining technique for producing high-quality joints in materials. In this article, Taguchi approach is applied to analyze the optimal process parameters for optimum tensile strength and hardness of welded dissimilar A6061 and A6082 alloys. An orthogonal array of L9 is implemented and the analysis of variance is employed to investigate the importance of parameters on responses. The experimental tests, conducted according to combination of rotational speed, tool tilt and types of tool pin profile parameters. The results indicate that the rotational speed is most significant process parameter that has the highest influence on tensile strength and hardness, followed by tool pin profile and tool tilt. The optimum results verified by conducting confirmation experiments. The predicted optimal value of tensile strength and hardness of dissimilar joints produced by friction stir welding are 267.74 MPa and 80.55 HRB, respectively.


2014 ◽  
Vol 61 (3) ◽  
pp. 455-468
Author(s):  
Hiralal Subhash Patil ◽  
Sanjay N. Soman

Abstract Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal) have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.


2020 ◽  
Vol 14 (1) ◽  
pp. 6259-6271
Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanish Paramaguru ◽  
Mokhtar Awang ◽  
Hamed Mohebbi ◽  
Sharma V Korada

Underwater Friction Stir Welding (UFSW) is a solid-state joining technique which uses a non-consumable tool to weld metals. The objective of this investigation is to evaluate the mechanical properties of the AA5052 Aluminium alloy joints prepared by UFSW. The effect of different type of welding tools and welding parameters on the weld joint properties are studied. Square, tapered cylindrical and taper threaded cylindrical type of welding tools have been used to produce the joints with the tool rotational speed varying from 500 rpm to 2000 rpm while the welding speed varying from 50 mm/min to 150 mm/min. Tensile strength, micro-hardness distribution, fracture features, micro-and macrostructure of the fabricated weld joints have been evaluated. The effect of welding process parameters that influences the mechanical properties and fracture characterization of the joints are explained in detail. A maximum Ultimate Tensile Strength (UTS) value of 222.07 MPa is attained with a gauge elongation of 14.78%. Microstructural evaluation revealed that most of the fracture are found on the thermal mechanically affected zone (TMAZ)adjacent to the weld nugget zone (WNZ) due to bigger grain sizes. It is found that most of the joints exhibit ductile characteristics in failure. Fractography analysis has been used to find the behavior of weld joints in failure.


2011 ◽  
Vol 383-390 ◽  
pp. 2753-2758
Author(s):  
Amir Mostafapour Asl ◽  
Saeed Mahmoodi Darani ◽  
Mohamad Kazem Besharati Givi ◽  
Arash Aghagol

Friction stir processing (FSP) was used to fabricate Al/Cu metal matrix composite (MMC). The effects of two different tool pin profiles (straight cylindrical and square) and the number of FSP passes on microstructure, tensile properties and microhardness were studied. The results indicated that good dispersion of micro-sized Cu particles, finer grains, higher tensile properties and higher microhardness, can be achieved by the square tool pin profile compared to the samples produced by the other tool. Also it was observed that the ultimate tensile strength of the samples produced by two FSP passes, as a result of Cu particles shattering, increased intensively compared to the samples fabricated with first FSP pass. Further FSP passes increased the elongation of the composites without any considerable changes in yield and ultimate tensile strength.


2018 ◽  
Vol 775 ◽  
pp. 466-472 ◽  
Author(s):  
K. Tejonadha Babu ◽  
S. Muthukumaran ◽  
C. Bharat Kumar

Friction stir welding (FSW), a new joining process is finding extensive use in the welding of aluminum alloy sheets. The metal transfer modes in the FSW cause the quality of the weld and its properties. The first mode of metal transfer is accomplished by the tool and shoulder, while the second mode occurs around the pin. In the present study, two different welding conditions, which were friction stir welding in the air (CFSW) and underwater friction stir welding (UWFSW) carried out at various welding parameters to weld the AA5052-O aluminum alloy sheets and determine the consequence of the first mode on the tensile strength of welded joints. Considerable grain refinement and enhanced mechanical properties were obtained in UWFSW joints. It Is observed that the first mode affect the tensile strength of the joint, also found that a linear correlation between the first mode and the tensile strength.


2016 ◽  
Vol 852 ◽  
pp. 344-348
Author(s):  
R. Mohammed Ryan ◽  
E. Sangeeth Kumar

The development of the friction stir welding being a solid state welding has provided an improved way of manufacturing aluminum joints in a quicker and reliable manner. The heat treatable aluminum alloy AA7075 is used substantially in the aerospace industry because of its high strength to weight ratio and good ductility. The objective of our work is to research the parameters of welding on the mechanical properties of friction stir welded joints of AA7075-T651. The parameters namely rotational speeds (500 rpm, 700 rpm, 900 rpm, 1100 rpm, 1300 rpm and 1500 rpm) were thought-about and table transverse speed of 50 mm/min, axial force of 8 KN is constrained throughout the welding process. The result of these parameters on weld quality is analyzed by its mechanical properties namely micro hardness and tensile strength.


2019 ◽  
Vol 7 (1) ◽  
pp. 17-23
Author(s):  
Azzam Sabah Albunduqee ◽  
Hussein R Al-Bugharbee

Friction Stir Welding is one of the technologies of joining solid states, which still attracts the researchers’ interest.  In welded joints the mechanical properties are affected by a number of mechanical properties of the joined materials and by the process parameters as well. In the present study, the effect of a number of friction stir welding parameters on the tensile strength of the welded joint have been investigated using the Taguchi method and the analysis of variance (ANOVA). The study considers different levels of friction stir welding variables; namely, different rotational speeds of (2000, 1600, 1250 rpm), different welding speeds (12.5, 16, 20 mm / min), and different welding tilt angles (0, 1, 2 degrees).  The optimum process parameters and their contribution rate were selected based on the Taguchi method for test design and by using the Minitab 16 program. In this study, the best results (i.e, higher tensile strength) were obtained at a rotational velocity of 1600 rpm, linear velocity of 16 mm / min, and welding angle, 1o. The highest tensile strength was obtained under these conditions.                                                                                       


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1805
Author(s):  
Suppachai Chainarong ◽  
Thanatkij Srichok ◽  
Rapeepan Pitakaso ◽  
Worapot Sirirak ◽  
Surajet Khonjun ◽  
...  

In this study, we present a new algorithm for finding the optimal friction stir welding parameters to maximize the tensile strength of a butt joint made of the semisolid material (SSM) ADC12 aluminum. The welding parameters were rotational speed, welding speed, tool tilt, tool pin profile, and rotational direction. The method presented is a variable neighborhood strategy adaptive search (VaNSAS) approach. The process of finding the optimal friction stir welding parameters comprises five steps: (1) identifying the type and range of friction stir parameters using a literature survey; (2) performing experiments according to (1); (3) constructing a regression model using the response surface method optimizer (RSM optimizer); (4) using VaNSAS to find the optimal parameters for the model obtained from (3); and (5) confirming the results from (4) using the parameter levels obtained from (4) to perform real experiments. The computational results revealed that the tensile strength generated from VaNSAS was 3.67% higher than the tensile strength obtained from the RSM optimizer parameters. The optimal parameters obtained from VaNSAS were a rotation speed of 2200 rpm, a welding speed of 108.34 mm/min, a tool tilt of 1.23 Deg, a tool pin profile of a hexagon, and a rotational direction of clockwise.


2014 ◽  
Vol 622-623 ◽  
pp. 540-547 ◽  
Author(s):  
Massimo Callegari ◽  
Archimede Forcellese ◽  
Matteo Palpacelli ◽  
Michela Simoncini

Robotic friction stir welding experiments were performed on AA5754 aluminium alloy sheets, 2.5 mm in thickness, in two different temper states (H111 and O-annealed). A six axes robot with a hybrid structure, characterised by an arm with parallel kinematics and a roll-pitch-roll wrist with serial kinematics, was used. The effect of the process parameters on the macro-and micro-mechanical properties and microstructure of joints was widely analysed. It was shown that, under the same process condition, the mechanical properties of the joints are strongly influenced by the initial temper state of the alloy. In particular, as AA5754-H111 is welded, the ultimate tensile strength is not significantly affected by the process parameters whilst the ultimate elongation significantly depends on the welding speed. In AA5754-O, both ultimate values of tensile strength and elongation are affected by the welding speed whilst a negligible effect of the rotational speed can be observed. Irrespective of the welding parameters, the H111 temper state leads to mechanical properties higher than those given by the O-annealed state. An investigation has been also carried out in order to evaluate the micro-hardness profiles and microstructure of the FSWed joints in order to understand the mechanisms operating during robotic friction stir welding.


Sign in / Sign up

Export Citation Format

Share Document