A study on surface quality of thin-walled machined parts

2018 ◽  
Vol 5 (9) ◽  
pp. 18730-18738 ◽  
Author(s):  
Manikandan Hareendran ◽  
S. Sreejith
2011 ◽  
Vol 223 ◽  
pp. 931-939
Author(s):  
Rodrigo Panosso Zeilmann ◽  
Gerson Luiz Nicola ◽  
Fernando Moreira Bordin ◽  
Tiago Vacaro ◽  
Mariana Czarnobay Zanotto

The electrical discharge machining (EDM) is a process widely used in machining of complex geometries and hardened materials, conditions that often are not met by conventional machining processes. In EDM the electrode reproduces its image or geometry on the part and this image is obtained by chip removing process, which is given by high frequency electrical discharges, causing the melting and vaporization of electrically conductive materials. Due to this mechanism of material removal, the surface is subjected to high thermal loads, which heavily influences the surface quality of obtained parts. For the characterization of these surfaces must be considered the surface topography and the metallurgical changes of the subsurface layer, since both characteristics influence the functionality of the machined parts. In addition, several variables related to the EDM process have influence on the characteristics of the generated surface. This work presents a study of the influence of EDM process on the surface quality of square cavities. It was evaluated different regions of the cavities, such as side wall, bottom and corners. The results showed significant differences between the analyzed regions.


2021 ◽  
Author(s):  
Yong Zhang ◽  
Shan Gao ◽  
Ning Yang ◽  
Xiaohui Jiang ◽  
Guokuan Zhao ◽  
...  

Abstract Aerospace thin-walled parts have the characteristics of low stiffness and complex structure, which are easily deformed by machine tool vibration, cutting force and heat during machining. The traditional fixture is in point contact with the workpiece, and the workpiece bears uneven force, which results in poor surface quality and low precision of the part. Therefore, it is urgent to improve the machining efficiency and surface quality of workpiece. According to the performance of magnetorheological fluid, a magnetorheological flexible fixture is designed to completely wrap the parts so as to make them bear uniform force, improve the stiffness of the system and inhibit flutter. Firstly, the stiffness distribution of thin-walled parts, flexible fixtures and fixture-workpiece system is studied in this paper. It can be seen that the symmetrical center stiffness of magnetorheological flexible fixtures is relatively low. Through milling experiments with single process parameters, it is found that when the rotational speed, cutting depth and feed speed change, the composite clamping effect is better than the traditional clamping effect, in which with the increase of rotational speed, the vibration acceleration in Ax, Ay and Az directions decreases by 25.16%, 26.87% and 10.78% respectively; When the cutting depth increases, Ay decreases by 23.12% at the maximum. When the feed speed changes, it decreases by 15.78%. Finally, based on the case of milling thin-walled parts with magnetorheological flexible fixture, it is obtained that the coaxiality of composite clamped thin-walled parts decreases by 13.85%, and the maximum decrease of cylindricity is 36.73%. Roughness value Rz decreases by 80.47% at the maximum. In summary, the above results have verified that the machining quality of the magnetorheological flexible fixture is better.


2019 ◽  
Vol 813 ◽  
pp. 191-196
Author(s):  
Francesco Bruzzo ◽  
Guendalina Catalano ◽  
Ali Gökhan Demir ◽  
Barbara Previtali

Laser metal deposition (LMD) is an additive manufacturing process highly adaptable to medium to large sized components with bulky structures as well as thin walls. Low surface quality of as-deposited LMD manufactured components with average roughness values (Ra) around 15-20μm is one of the main drawbacks that prevent the use of the part without the implementation of costly and time-consuming post-processes. In this work laser re-melting is applied right after LMD process with the use of the same equipment used for the deposition to treat AISI 316L thin walled parts. The surface quality improvement is assessed through the measurement of both areal surface roughness Sa(0.8mm) QUOTE and waviness Wa QUOTE (0.8mm) parameters. Moreover, roughness power spectrum is used to point out the presence of principal periodical components both in the as-deposited and in the re-melted surfaces. Then, the transfer function is calculated to better understand the effects of laser re-melting on the topography evolution, measuring the changes of individual components contributing to the surface roughness such as the layering technique and the presence of sintered particles. Experiments showed that while low energy density inputs are not capable to properly modify the additive surface topography, excessive energy inputs impose a strong periodical component with wavelength equal to the laser scan spacing and directionality determined by the used strategy. When a proper amount of energy density input is used, laser re-melting is capable to generate smooth isotropic topographies without visible periodical surface structures.


Author(s):  
A.A. Filatov ◽  
O.V. Sokolova ◽  
E.V. Lagoshina

The causes for the occurrence of axial forces during the cold periodic rolling in the deformation zone are considered. Original method for solving of the axial forces minimization to increase the productivity of mills and the quality of the finished product is presented.


Author(s):  
Ivan Buranský ◽  
Matej Bračík ◽  
Vladimír Šimna

Abstract This paper deals with the influence of the end mill helix angle on the flatness and surface quality of aluminium (EN AW 6082) thin-walled parts. The three teeth solid end mills of 12 mm diameter with same and different helix angle of third tooth were designed. The tests were performed using the HSC 105 linear CNC machine and following cutting parameters: cutting speeds (800, 100 and 1200 m.min−1), feed per tooth (0.12 mm), cutting depth (for roughing 10 mm and for finishing 5 mm). Evaluation of surface quality of the processed thin-walled parts shows that the helix angle of the end mills has a significant influence on the surface quality of the thin-walled parts. The best results were obtained in the case of end mill with different 35° helix angle of third tooth and cutting speed 1000 m.min−1.


2018 ◽  
Vol 2018 (04) ◽  
pp. 2552-2557
Author(s):  
Ivan Buransky ◽  
Matej Bracik ◽  
Vladimir Simna ◽  
Tomas Vopat

2013 ◽  
Vol 581 ◽  
pp. 255-260 ◽  
Author(s):  
Martin Novák

The traditional approach to grinding is to operate within the limits of surface quality. The requirements for surface quality in grinding are higher than those in other common machining operations such as turning and milling. The surface quality of machined parts is very important for precise production and assembly. When we focus on roughness parameters after grinding, we can establish the limits of these parameters for typical grain materials: Al2O3, SiC, CBN, SG and others. Increasing demands on accuracy and quality of production leads to research concerned with the properties of these materials and the surface quality after grinding. This paper shows new possibilities for the ground surface with focus on surface roughness obtained under varying combinations of cutting conditions. The influence of the grinding wheel, cutting parameters and coolant on higher surface quality is assessed by roughness parameters Ra, Rz, Rt and the Material portion of a surface profile. These high-precision ground surfaces are shown to have a Nanometres (10-9) unit topography demonstrating that the process is able to replace other finishing technologies such as superfinishing or honing.


Author(s):  
Jixiong Fei ◽  
Bin Lin ◽  
Shuai Yan ◽  
Mei Ding ◽  
Jin Zhang ◽  
...  

Deformation of thin-walled structure during machining will influence the surface quality of the final part. Present article investigates this problem and develops a method to predict the surface roughness of the machined surface. To achieve this, the prerequisite is to obtain the dynamic deformation along the milling path. To calculate it accurately, the workpiece is simplified as thin-walled shell and the milling force is simplified as moving input. An expression of the dynamic deformation of the whole structure, which under the excitation of moving milling force, is derived by solving the vibration equation using modal superposition method. Then, the deformation along the milling path is computed by substituting the path coordinates into the expression. The deformation along the milling path is filtered to remove its low-frequency and mid-frequency signals before it is used to evaluate the surface roughness of the machined surface. At last, several machining cases are implemented to demonstrate the proposed method. The experimental results match well with the predicted results. From the predicted and experimental results, it is founded that the deformation during processing is the main reason leading to the poor surface quality of the flexible machined workpiece.


2018 ◽  
Vol 2018 (04) ◽  
pp. 2547-2551
Author(s):  
Jan Strejcek ◽  
Libor Zak ◽  
Jakub Dvorak

Sign in / Sign up

Export Citation Format

Share Document