Numerical simulation and experimental tests on a lumbar disc prosthesis

2019 ◽  
Vol 7 ◽  
pp. 586-592 ◽  
Author(s):  
G. La Rosa ◽  
G. Gioè ◽  
G. Fargione
2015 ◽  
Vol 19 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Giuseppe Canneto ◽  
Cesare Freda ◽  
Giacobbe Braccio

The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.


2006 ◽  
Vol 52 (1) ◽  
pp. e15-e18 ◽  
Author(s):  
C STOLLBERGER ◽  
A WECHSLERFORDOS ◽  
F GEPPERT ◽  
W GULZ ◽  
E BROWNSTONE ◽  
...  

2013 ◽  
Vol 42 (11) ◽  
pp. 1593-1602 ◽  
Author(s):  
Linda Berg ◽  
◽  
Christian Hellum ◽  
Øivind Gjertsen ◽  
Gesche Neckelmann ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


2019 ◽  
Vol 946 ◽  
pp. 775-781
Author(s):  
E.V. Timakov ◽  
F.S. Dubinskiy

In this paper, the ABAQUS is adopted to carry on numerical simulation on straightening process of R65 heavy rail. The straightening process has been simulated here using the FE package of ABAQUS. All the input data were extracted from experimental tests according to tail manufacturing. Moreover, initial camber of the rail was measured after hot rolling and cooling process.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
M. Potenza ◽  
P. Coppa ◽  
L. Cerroni ◽  
G. Bovesecchi

Abstract Different thermal mechanisms influence the tooth temperature during the reconstruction practice of tooth restoration: conduction in the hard tissues and their thermal capacitance, heat generation by composite curing, irradiation of the surface from the LED lamp, convection, and conduction to the environment. All these phenomena were considered into a numerical (finite difference, FD) model to simulate the temperature trend in a tooth during reconstruction with a resin composite addition, and results compared with experiments on cylindrical sample with a cavity filled with resin. Results demonstrate that all the phenomena have been sufficiently accurately described, and the way to apply the model to real teeth is recognized.


2019 ◽  
Vol 85 ◽  
pp. 02005
Author(s):  
Gelu Muscă ◽  
George Mădălin Chitaru ◽  
Costin Ioan Coşoiu ◽  
Cătalin Nae

Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software.


Sign in / Sign up

Export Citation Format

Share Document