Physical & mechanical characterization of composites from waste tire rubber crumb

2020 ◽  
Vol 26 ◽  
pp. 1752-1756
Author(s):  
Bidyut Prava Jena ◽  
Bijaya Bijeta Nayak ◽  
Suchismita Satapathy
Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7493
Author(s):  
Matteo Sambucci ◽  
Marco Valente

The use of waste materials as alternative aggregates in cementitious mixtures is one of the most investigated practices to enhance eco-sustainability in the civil and construction sectors. For specific applications, these secondary raw materials can ensure adequate technological performance, minimizing the exploitation of natural resources and encouraging the circular disposal of industrial or municipal waste. Aiming to design and develop lightweight paving blocks for pedestrian or very light-traffic purposes (parking area, garage, sidewalk, or sports surfaces), this paper presents the material characterization of rubberized cement mortars using ground waste tire rubber (0–1 mm rubber powder and 1–3 mm rubber granules) to totally replace the mineral aggregates. Considering recommended requirements for concrete paving members in terms of mechanical strength, water drainage performance, acoustic attenuation, and dynamic and energy absorption behavior, a comprehensive laboratory testing is proposed for five different formulations varying the sand-rubber replacement level and the proportion ratio between the two rubber fractions. Tests highlighted positive and promising results to convert laboratory samples into pre-cast members. The “hot” finding of the work was to prove the feasibility of obtaining totally rubberized mortars (0 v/v% of sand) with suitable engineering performance and enhanced eco-friendly features.


2016 ◽  
Vol 8 (3) ◽  
pp. 108-116 ◽  
Author(s):  
Joseph Olawale Akinyele ◽  
Ramhadhan Wanjala Salim ◽  
Williams Kehinde Kupolati

A lot of research has proposed the use of alternative materials in concrete, one of such material that has gained a lot of attention is the waste tire rubber. In this research, rubber crumb was used to partially replace fine aggregate in concrete at 0, 4, 8, 12, and 16% and represented as M0, M4, M8, M12, and M16, respectively. Sieve analysis was carried out on the rubber crumb and sand, while slump, compressive and tensile test were carried out on the concrete samples. The sieve analysis revealed that both the fine aggregate and rubber crumb are poorly graded. The slump test showed that the concrete losses it consistency as more rubber crumb was added. The 28 days compressive strength showed that there was a general reduction in strength. The work concluded that rubber crumb can be used to replace fine aggregate up to 16%, in lightweight concrete.


2016 ◽  
Vol 25 (11) ◽  
pp. 115002 ◽  
Author(s):  
Ubaidillah ◽  
Fitrian Imaduddin ◽  
Yancheng Li ◽  
Saiful Amri Mazlan ◽  
Joko Sutrisno ◽  
...  

2002 ◽  
Vol 84 (3) ◽  
pp. 622-631 ◽  
Author(s):  
Amit K. Naskar ◽  
Anil K. Bhowmick ◽  
S. K. De

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Wei Sun

For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder) and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.


2018 ◽  
Vol 6 (3) ◽  
pp. 035703 ◽  
Author(s):  
Tej Singh ◽  
Mukesh Kumar Rathi ◽  
Amar Patnaik ◽  
Ranchan Chauhan ◽  
Sharafat Ali ◽  
...  

2007 ◽  
Vol 28 (7) ◽  
pp. 2234-2238 ◽  
Author(s):  
D. García ◽  
J. López ◽  
R. Balart ◽  
R.A. Ruseckaite ◽  
P.M. Stefani

Sign in / Sign up

Export Citation Format

Share Document