scholarly journals Ground Waste Tire Rubber as a Total Replacement of Natural Aggregates in Concrete Mixes: Application for Lightweight Paving Blocks

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7493
Author(s):  
Matteo Sambucci ◽  
Marco Valente

The use of waste materials as alternative aggregates in cementitious mixtures is one of the most investigated practices to enhance eco-sustainability in the civil and construction sectors. For specific applications, these secondary raw materials can ensure adequate technological performance, minimizing the exploitation of natural resources and encouraging the circular disposal of industrial or municipal waste. Aiming to design and develop lightweight paving blocks for pedestrian or very light-traffic purposes (parking area, garage, sidewalk, or sports surfaces), this paper presents the material characterization of rubberized cement mortars using ground waste tire rubber (0–1 mm rubber powder and 1–3 mm rubber granules) to totally replace the mineral aggregates. Considering recommended requirements for concrete paving members in terms of mechanical strength, water drainage performance, acoustic attenuation, and dynamic and energy absorption behavior, a comprehensive laboratory testing is proposed for five different formulations varying the sand-rubber replacement level and the proportion ratio between the two rubber fractions. Tests highlighted positive and promising results to convert laboratory samples into pre-cast members. The “hot” finding of the work was to prove the feasibility of obtaining totally rubberized mortars (0 v/v% of sand) with suitable engineering performance and enhanced eco-friendly features.

2020 ◽  
Vol 26 ◽  
pp. 1752-1756
Author(s):  
Bidyut Prava Jena ◽  
Bijaya Bijeta Nayak ◽  
Suchismita Satapathy

2016 ◽  
Vol 25 (11) ◽  
pp. 115002 ◽  
Author(s):  
Ubaidillah ◽  
Fitrian Imaduddin ◽  
Yancheng Li ◽  
Saiful Amri Mazlan ◽  
Joko Sutrisno ◽  
...  

2013 ◽  
Vol 658 ◽  
pp. 85-88
Author(s):  
Xing Ping Li ◽  
Da Huang ◽  
Xiang He ◽  
Hui Li Lin ◽  
Kai Sun ◽  
...  

The physical properties and mechanical behavior of cement mortars containing waste tire rubber particles (WTRP) were studied. Several mortar mixtures were prepared by replacing quartz sand with 100% of WTRP and by using cement content of 150, 200, 250, 300, 350 and 400 kg/m3 respectively. Results indicated that dry bulk densities of the mortars containing WTRP were all less than 1000 kg/m3. The mortars had a certain hydrophobic property. The 28 d compressive strengths of the mortars were 0.59~2.29 MPa and the thermal conductivity values were 0.096~0.152 W/(m.K) increased with the cement content increasing. So, the mortars containing WTRP can be used as thermal insulating material.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


2002 ◽  
Vol 84 (3) ◽  
pp. 622-631 ◽  
Author(s):  
Amit K. Naskar ◽  
Anil K. Bhowmick ◽  
S. K. De

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Wei Sun

For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder) and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.


2018 ◽  
Vol 6 (3) ◽  
pp. 035703 ◽  
Author(s):  
Tej Singh ◽  
Mukesh Kumar Rathi ◽  
Amar Patnaik ◽  
Ranchan Chauhan ◽  
Sharafat Ali ◽  
...  

2007 ◽  
Vol 28 (7) ◽  
pp. 2234-2238 ◽  
Author(s):  
D. García ◽  
J. López ◽  
R. Balart ◽  
R.A. Ruseckaite ◽  
P.M. Stefani

Sign in / Sign up

Export Citation Format

Share Document