Bleached shellac in situ forming micro-particle fabricated with different oils as antibacterial delivery system for periodontitis treatment

Author(s):  
Tiraniti Chuenbarn ◽  
Sarun Tuntarawongsa ◽  
Sarayut Janmahasatian ◽  
Thawatchai Phaechamud
2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Elham Khodaverdi ◽  
Fatemeh Kheirandish ◽  
Farnaz Sadat Mirzazadeh Tekie ◽  
Bibi Zahra Khashyarmanesh ◽  
Farzin Hadizadeh ◽  
...  

In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a synthetic glucocorticoid, is used clinically to improve inflammation, pain, and the hyperemesis of chemotherapy, and it is applied experimentally as a differentiation factor in tissue engineering. PLGA-PEG-PLGA was synthesised under microwave irradiation for 5 min. The obtained copolymer was characterised to determine its structure and phase transition temperature. An in vitro release study was conducted for various copolymer structures and drug concentrations. The yield of the reaction and HNMR analysis confirmed the appropriateness of the microwave-assisted method for PLGA-PEG-PLGA synthesis. Phase transition temperature was affected by the drug molecule as well as by the copolymer concentration and structure. An in vitro release study demonstrated that release occurs mainly by diffusion and does not depend on the copolymer structure or dexamethasone concentration.


2013 ◽  
Vol 545 ◽  
pp. 63-68 ◽  
Author(s):  
Jongjan Mahadlek ◽  
Juree Charoenteeraboon ◽  
Thawatchai Phaechamud

Periodontitis is an inflammatory disease of the supporting structures of the tooth caused by bacterial infection which can result in tooth loss. The local intra-pocket drug delivery system was interesting and highly effective for periodontitis treatment. In situ forming gel system is the polymeric solution which could transform into gel for localizing and sustaining the drug release at desired site. This system has been recommended as one of suitable delivery system for this purpose. Benzoyl peroxide (BPO) in situ forming gels were developed using Eudragit RS as polymer dispersed in N-methyl-pyrrolidone (NMP). Peppermint oil and polyethylene glycol 1500 were also incorporated as the excipients. The prepared systems were evaluated for rheology, syringeability (using texture analyzers), in situ gel formation (after injection into PBS pH 6.8), antimicrobial activity (against Streptococcus mutans with agar diffusion) and drug release (with dialysis method in PBS pH 6.8 at 50 rpm, 37 °C). The viscosity and syringeability of the prepared systems was increased as the amount of BPO, peppermint oil or PEG 1500 was increased. All prepared gels showed the Newtonian flow which the viscosity was decreased as the temperature was increased. All prepared gels comprising peppermint oil and PEG 1500 could form in situ gel in used medium which the pH was close to the environment pH of periodontal pocket. The inhibition zone against Streptococcus mutans of the prepared system was significantly decreased when the peppermint oil and PEG 1500 was incorporated owing to the higher viscous environment and thereafter retardation of drug diffusion was evident. This effect could prolong the drug release. From drug release test, all prepared gels could sustain the BPO release for at least 96 hrs. Release kinetic obtained from curve fitting with various release equations using least square fit technique indicated that the release patterns were as Higuchi’s model therefore the release of BPO was performed with diffusion control. This developed BPO in situ forming gel presented its ability as the controlled drug delivery system for localized antimicrobial activity at periodontal pocket.


2013 ◽  
Vol 172 (1) ◽  
pp. e61
Author(s):  
Qingxiang Guan ◽  
Jingwen Lu ◽  
Tianmu Lin ◽  
Chen Chen ◽  
Chen Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document