Effect of carbon fiber reinforced polymer (CFRP) laminates on behaviour of flexural strength of steel beams with and without end anchorage plates

Author(s):  
Ahmed S.D. AL-Ridha ◽  
Kamal Sh. Mahmoud ◽  
Ali F. Atshan
Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4592
Author(s):  
Chen Xiong ◽  
Tianhao Lan ◽  
Qiangsheng Li ◽  
Haodao Li ◽  
Wujian Long

This study investigates the feasibility of collaborative use of recycled carbon fiber reinforced polymer (RCFRP) fibers and recycled aggregate (RA) in concrete, which is called RCFRP fiber reinforced RA concrete (RFRAC). The mechanical properties of the composite were studied through experimental investigation, considering different RCFRP fiber contents (0%, 0.5%, 1.0%, and 1.5% by volume) and different RA replacement rates (0%, 10%, 20%, and 30% by volume). Specifically, ten different mixes were designed to explore the flowability and compressive and flexural strengths of the proposed composite. Experimental results indicated that the addition of RCFRP fibers and RA had a relatively small influence on the compressive strength of concrete (less than 5%). Moreover, the addition of RA slightly decreased the flexural strength of concrete, while the addition of RCFRP fibers could significantly improve the flexural performance. For example, the flexural strength of RA concrete with 1.5% RCFRP fiber addition increased by 32.7%. Considering the good flexural properties of the composite and its potential in reducing waste CFRP and construction solid waste, the proposed RFRAC is promising for use in civil concrete structures with high flexural performance requirements.


2014 ◽  
Vol 800-801 ◽  
pp. 61-65 ◽  
Author(s):  
Kun Xian Qiu ◽  
Cheng Dong Wang ◽  
Qing Long An ◽  
Ming Chen

The new developed carbon fiber reinforced polymer laminates are widely used in main structural components of big commercial aircrafts. Generally drilling is the final operations in manufacturing structure, which is the most important operation during assembly. Defects such as burrs and delamination always appear in the process of drilling, which makes it hard to control the drilling quality. In this research, the drilling defects of T800 CFRP laminates are evaluated by using a brad point drill and a multifacet drill in terms of drilling forces, burr defect and delamination detection. The results show that the spindle speed is the most significant factor affecting the delamination defect followed by the feed rate. High speed drilling and low feed rate could improve the surface quality and reduce the delamination. The multifacet drill showed excellent drilling performance than the brad point drill and generated smaller defects.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shaoni Jiao ◽  
Jian Li ◽  
Fei Du ◽  
Lei Sun ◽  
Zhiwei Zeng

The paper studies the characteristics of eddy current (EC) distribution in carbon fiber reinforced polymer (CFRP) laminates so as to guide the research and operation of eddy current testing of CFRP. To this end, an electromagnetic field computation model of EC response to CFRP based on the finite element method is developed. Quantitative analysis of EC distribution in plies of unidirectional CFRP reveals that EC changes slowly along the fiber direction due to the strong electrical anisotropy of the material. Variation of EC in plies of multidirectional CFRP is fast in both directions. The attenuation of EC in the normal direction in unidirectional CFRP is faster than that in isotropic material due to faster diffusion of EC. In multidirectional CFRP, EC increases near the interfaces of plies having different fiber orientations. The simulation results are beneficial to optimizing sensor design and testing parameters, as well as damage detection and evaluation.


Author(s):  
Ziyang Zhang ◽  
Junchuan Shi ◽  
Tianyu Yu ◽  
Aaron Santomauro ◽  
Ali Gordon ◽  
...  

Abstract Carbon fiber-reinforced polymer (CFRP) composites have been used extensively in the aerospace and automotive industries due to their high strength-to-weight and stiffness-to-weight ratios. Compared with conventional manufacturing processes for CFRP, additive manufacturing (AM) can facilitate the fabrication of CFRP components with complex structures. While AM offers significant advantages over conventional processes, establishing the structure–property relationships in additively manufactured CFRP remains a challenge because the mechanical properties of additively manufactured CFRP depend on many design parameters. To address this issue, we introduce a data-driven modeling approach that predicts the flexural strength of continuous carbon fiber-reinforced polymers (CCFRP) fabricated by fused deposition modeling (FDM). The predictive model of flexural strength is trained using machine learning and validated on experimental data. The relationship between three structural design factors, including the number of fiber layers, the number of fiber rings as well as polymer infill patterns, and the flexural strength of the CCFRP specimens is quantified.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
E. Agcakoca ◽  
M. Aktas

Carbon fiber-reinforced polymer materials have become popular in the construction industry during the last decade for their ability to strengthen and retrofit concrete structures. The recent availability of high-modulus carbon fiber-reinforced polymer strips (HMCFRP) has opened up the possibility of using this material in strengthening steel structures as well. The strips can be used in steel bridge girders and structures that are at risk of corrosion-induced cross-sectional losses, structural deterioration from aging, or changes in function. In this study, a set of bending experiments was performed on three types of steel beams reinforced with HMCFRP. The results were used to enhance a nonlinear finite element model built with ABAQUS software. The accuracy of the mathematical models for HMCFRP, epoxy, and steel profiles was compared with the experimental results, and the ability of HMCFRP to continue carrying load from the steel beams during rupture and postrupture scenarios was observed using numerical analysis. Using these verified finite element models, a parametric analysis was performed on the HMCFRP failure modes and the quantity to be used with IPE profile steel beams. The maximum amount of HMCFRP needed for strengthening was determined, and an upper limit for its use was calculated to avoid any debonding failure of the fiber material.


2016 ◽  
Vol 866 ◽  
pp. 114-118
Author(s):  
Mary Ann N. Ahalajal ◽  
Nathaniel C. Tarranza

This study investigates the use of carbon fiber reinforced polymer (CFRP) strips as an alternative way of retrofitting steel I-beams. The flexural strength and maximum deflection of unstrengthened and CFRP-strengthened steel I-beams were compared. Three groups of samples were studied: the first group has CFRP strip installed on the tension flange of the steel I-beam; the second group has CFRP strips installed on the compression and tension flanges of the steel I-beam; and the third group comprises unstrengthened steel I-beams which serve as control specimens. All specimens were tested as simply supported beams under third-point loading. A reaction frame machine was used to apply the load while a dial indicator was used to measure deflections.


Sign in / Sign up

Export Citation Format

Share Document