Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning

Author(s):  
Ziyang Zhang ◽  
Junchuan Shi ◽  
Tianyu Yu ◽  
Aaron Santomauro ◽  
Ali Gordon ◽  
...  

Abstract Carbon fiber-reinforced polymer (CFRP) composites have been used extensively in the aerospace and automotive industries due to their high strength-to-weight and stiffness-to-weight ratios. Compared with conventional manufacturing processes for CFRP, additive manufacturing (AM) can facilitate the fabrication of CFRP components with complex structures. While AM offers significant advantages over conventional processes, establishing the structure–property relationships in additively manufactured CFRP remains a challenge because the mechanical properties of additively manufactured CFRP depend on many design parameters. To address this issue, we introduce a data-driven modeling approach that predicts the flexural strength of continuous carbon fiber-reinforced polymers (CCFRP) fabricated by fused deposition modeling (FDM). The predictive model of flexural strength is trained using machine learning and validated on experimental data. The relationship between three structural design factors, including the number of fiber layers, the number of fiber rings as well as polymer infill patterns, and the flexural strength of the CCFRP specimens is quantified.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4592
Author(s):  
Chen Xiong ◽  
Tianhao Lan ◽  
Qiangsheng Li ◽  
Haodao Li ◽  
Wujian Long

This study investigates the feasibility of collaborative use of recycled carbon fiber reinforced polymer (RCFRP) fibers and recycled aggregate (RA) in concrete, which is called RCFRP fiber reinforced RA concrete (RFRAC). The mechanical properties of the composite were studied through experimental investigation, considering different RCFRP fiber contents (0%, 0.5%, 1.0%, and 1.5% by volume) and different RA replacement rates (0%, 10%, 20%, and 30% by volume). Specifically, ten different mixes were designed to explore the flowability and compressive and flexural strengths of the proposed composite. Experimental results indicated that the addition of RCFRP fibers and RA had a relatively small influence on the compressive strength of concrete (less than 5%). Moreover, the addition of RA slightly decreased the flexural strength of concrete, while the addition of RCFRP fibers could significantly improve the flexural performance. For example, the flexural strength of RA concrete with 1.5% RCFRP fiber addition increased by 32.7%. Considering the good flexural properties of the composite and its potential in reducing waste CFRP and construction solid waste, the proposed RFRAC is promising for use in civil concrete structures with high flexural performance requirements.


2016 ◽  
Vol 866 ◽  
pp. 114-118
Author(s):  
Mary Ann N. Ahalajal ◽  
Nathaniel C. Tarranza

This study investigates the use of carbon fiber reinforced polymer (CFRP) strips as an alternative way of retrofitting steel I-beams. The flexural strength and maximum deflection of unstrengthened and CFRP-strengthened steel I-beams were compared. Three groups of samples were studied: the first group has CFRP strip installed on the tension flange of the steel I-beam; the second group has CFRP strips installed on the compression and tension flanges of the steel I-beam; and the third group comprises unstrengthened steel I-beams which serve as control specimens. All specimens were tested as simply supported beams under third-point loading. A reaction frame machine was used to apply the load while a dial indicator was used to measure deflections.


2022 ◽  
pp. 136943322110572
Author(s):  
Shao Lian ◽  
Ou Jinping ◽  
Zhou Zhi

Carbon fiber–reinforced polymer (CFRP) rods have been considered as a candidate material for prestressed concrete applications because of their superior properties. For current applications, successful use of CFRP rods is linked to an efficient anchorage system design. This paper presents a newly developed anchorage system for CFRP rods and the design concept that the extrusion process is used to generate gripping force. The proposed anchorage system consists of a steel barrel and an aluminum sleeve, and an extrusion region is designed on the outside of barrel to generate a suitable contact pressure distribution on the CFRP rod. A mathematical model was proposed to estimate the contact pressure on the CFRP rod and the capacity of anchorage system. The simulation of extrusion and loading process was conducted with a three-dimensional (3D) finite-element (FE) model. The key design parameters of anchorage system were analyzed to obtain an optimized parameter combination. The experimental validation showed that the new anchorage system is capable of allowing the CFRP rod to attain the ultimate tensile strength.


Author(s):  
Zainurrahman ◽  
Eko Darma ◽  
Sri Nuryati

Concrete Beams can experience a sudden collapse when overload because of its brittle characteristic. The use of Carbon Fiber Reinforced Polymer (CFRP) on concrete beams externally as external confinement is predicted to improve concrete mechanics properties, increase the ductility and capacity of concrete, and the flexural strength of concrete beams. An experimental study on the reinforcement of concrete beams with Carbon Fiber Reinforced Polymer (CFRP) was carried out to estimate the effectiveness of CFRP on concrete structures as a concrete beam flexural reinforcement material. Two types of concrete beams are provided in this study to test the flexural strengthening effect of the externally bound CFRP composite. First type of concrete beam used for testing is a normal concrete beams, whereas the second tested beam, the CFRP was laminated by coating the beams with Fiber. The dimensions of both types are 15cm x15cm with a length of 55cm footing range. Testing result obtained the compressive strength was 23,29 MPa, flexural strength of normal and CRFP concretes were 33,41 Kg/cm2 and 48,07 Kg/cm2 respectively. It was concluded that the use of CRFP at the concrete beam increases flexural strength up to 44% with the ratio of 143 %.


Author(s):  
Ali Raza Khoso ◽  
Muhammad Akram Akhund ◽  
Shankar Lal Menghwar ◽  
Fida Hussain Siddiqui

Concrete is a very common construction material. As time prevails, cracks often appear in structures that pose a threat to strength and durability, which ultimately affect the structural integrity of concrete. Extensive work has been carried out in past on utilization of Carbon Fiber Reinforced Polymer (CFRP) as a repair material. But, this research particularly focuses on: multiple fiber layers i.e. single and double, traditional concrete mix ratio with locally available materials and varying flexural reinforcement. Furthermore, this work presents an experimental analysis to strengthen the Reinforced Concrete (RC) beams using SikaWrap- 230 C as a CFRP wrap, and Sikadur-330 as a bonding material. The comparison between single and double layers of CFRP is of major interest in this research. Six reinforced concrete beams were repaired with CFRP and tested under three-point bending test. For these specimens, load deflection behavior along with crack propagation and failure of beams were studied. Experimental results show that beams repaired using CFRP wrapping achieved higher flexural capacity and ductility as compared with reference beam. Moreover, results reveal that introduction of second layer of fiber caused around 4-5.2% increment in flexural strength and resulted in higher ductility of RCC beam.


2021 ◽  
Vol 6 (1) ◽  
pp. 55-57
Author(s):  
Herish A. Hussein ◽  
Zia Razzaq

The effect of Carbon Fiber Reinforced Polymer (CFRP) retrofitting and concrete type on the flexural strength of prestressed concrete I-section girders used in bridges and beams in buildings is investigated. Non-linear moment-curvature relationships are predicted using an iterative algorithm for both non-retrofitted and CFRP-retrofitted prestressed concrete girder and beam cross-sections with various concrete types. Two different CFRP-retrofitting schemes are analyzed for comparing their effectiveness. It is found that although non-retrofitted beam section exhibits greater ductility, the use of CFRP retrofitting in both tension and compression regions simultaneously results in a significant increase in flexural strength. It is also found that the higher the ultimate concrete strength, the higher is the influence of CFRP-retrofitting on increasing flexural strength.


Sign in / Sign up

Export Citation Format

Share Document