Predictive modeling and statistical analysis of mechanical properties OF heat treated Cu-10 %Ni alloy using response surface methodology

Author(s):  
C.C. Nwaeju ◽  
F.O. Edoziuno ◽  
E.E. Nnuka
Author(s):  
Marios Kazasidis ◽  
Elisa Verna ◽  
Shuo Yin ◽  
Rocco Lupoi

AbstractThis study elucidates the performance of cold-sprayed tungsten carbide-nickel coating against solid particle impingement erosion using alumina (corundum) particles. After the coating fabrication, part of the specimens followed two different annealing heat treatment cycles with peak temperatures of 600 °C and 800 °C. The coatings were examined in terms of microstructure in the as-sprayed (AS) and the two heat-treated conditions (HT1, HT2). Subsequently, the erosion tests were carried out using design of experiments with two control factors and two replicate measurements in each case. The effect of the heat treatment on the mass loss of the coatings was investigated at the three levels (AS, HT1, HT2), as well as the impact angle of the erodents (30°, 60°, 90°). Finally, the response surface methodology (RSM) was applied to analyze and optimize the results, building the mathematical models that relate the significant variables and their interactions to the output response (mass loss) for each coating condition. The obtained results demonstrated that erosion minimization was achieved when the coating was heat treated at 600 °C and the angle was 90°.


2021 ◽  
pp. 009524432110153
Author(s):  
Jaber Mirzaei ◽  
Abdolhossein Fereidoon ◽  
Ahmad Ghasemi-Ghalebahman

In this study, the mechanical properties of polypropylene (PP)-based nanocomposites reinforced with graphene nanosheets, kenaf fiber, and polypropylene-grafted maleic anhydride (PP-g-MA) were investigated. Response surface methodology (RSM) based on Box–Behnken design (BBD) was used as the experimental design. The blends fabricated in three levels of parameters include 0, 0.75, and 1.5 wt% graphene nanosheets, 0, 7.5, and 15 wt% kenaf fiber, and 0, 3, and 6 wt% PP-g-MA, prepared by an internal mixer and a hot press machine. The fiber length was 5 mm and was being constant for all samples. Tensile, flexural, and impact tests were conducted to determine the blend properties. The purpose of this research is to achieve the highest mechanical properties of the considered nanocomposite blend. The addition of graphene nanosheets to 1 wt% increased the tensile, flexural, and impact strengths by 16%, 24%, and 19%, respectively, and an addition up to 1.5 wt% reduced them. With further addition of graphene nanosheets until 1.5 wt%, the elastic modulus was increased by 70%. Adding the kenaf fiber up to 15 wt% increased the elastic modulus, tensile, flexural, and impact strength by 24%, 84%, 18%, and 11%, respectively. The addition of PP-g-MA has increased the adhesion, dispersion and compatibility of graphene nanosheets and kenaf fibers with matrix. With 6 wt% PP-g-MA, the tensile strength and elastic modulus were increased by 18% and 75%, respectively. The addition of PP-g-MA to 5 wt% increased the flexural and impact strengths by 10% and 5%, respectively. From the entire experimental data, the optimum values for elastic modulus, as well as, tensile, flexural, and impact strengths in the blends were obtained to be 4 GPa, 33.7896 MPa, 57.6306 MPa, and 100.1421 J/m, respectively. Finally, samples were studied by FE-SEM to check the dispersion of graphene nanosheets, PP-g-MA and kenaf fibers in the polymeric matrix.


2016 ◽  
Vol 53 ◽  
pp. 283-292 ◽  
Author(s):  
Faramarz Ashenai Ghasemi ◽  
Ismail Ghasemi ◽  
Saman Menbari ◽  
Mohsen Ayaz ◽  
Alireza Ashori

2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2016 ◽  
Vol 84 ◽  
pp. 109-120 ◽  
Author(s):  
Sajjad Daneshpayeh ◽  
Faramarz Ashenai Ghasemi ◽  
Ismail Ghasemi ◽  
Mohsen Ayaz

Sign in / Sign up

Export Citation Format

Share Document