Ultra-high average figure of merit in synergistic band engineered Sn Na1−Se0.9S0.1 single crystals

2018 ◽  
Vol 21 (5) ◽  
pp. 501-507 ◽  
Author(s):  
Kunling Peng ◽  
Bin Zhang ◽  
Hong Wu ◽  
Xianlong Cao ◽  
Ang Li ◽  
...  
2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


Author(s):  
Akira Nagaoka ◽  
Kenji Yoshino ◽  
Taizo Masuda ◽  
Taylor D. Sparks ◽  
Michael A. Scarpulla ◽  
...  

Thermoelectrics (TEs) are an important class of technologies for harvesting electric power directly from heat sources. To design both high performance and environmentally friendly for TE materials, pseudo-cubic structure has...


2003 ◽  
Vol 18 (7) ◽  
pp. 1646-1651 ◽  
Author(s):  
Ryoji Funahashi ◽  
Saori Urata ◽  
Toyohide Sano ◽  
Masaaki Kitawaki

Having recently succeeded in synthesizing large single crystals of (Ca2CoO3)CoO2 (Co-349) with superior thermoelectric properties using a modified flux method, we have prepared a composite material of Co-349 powder and single crystals and examined its thermoelectric properties. The electrical conductivity σ of this composite, which contained 20 wt.% single crystals, was higher than that of a sample without the single crystals. While the achievable effect has yet to be fully realized, improved grain alignment and the effect of current bypassing grain boundaries through the large single crystals in the composite are thought to cause the increasing σ, which consequently results in an enhanced thermoelectric figure of merit of about 0.56 at 973 K in air.


2021 ◽  
Author(s):  
◽  
Michael Ng

<p>Energy consumption worldwide is constantly increasing, bringing with it the demand for low cost, environmentally friendly and efficient energy technologies. One of these promising technologies is thermoelectrics in which electric power is harvested from waste heat energy. The efficiency of a thermoelectric device is determined by the dimensionless figure of merit ZT = σS²T/k where σ is the electrical conductivity, S is the thermopower, k is the thermal conductivity, and T is the average temperature. In this thesis we investigate the use of nanostructuring, which has been known to lead to significant reduction in the lattice thermal conductivity to maximise the figure of merit.  One of the most successful bulk thermoelectric materials is Bi₂Te₃, with a ZT of unity at room temperature. Here we investigate the effects of nanostructuring on the thermoelectric properties of Bi₂Te₃. Sub-100 nm ₂Te₃ nanoparticles were successfully synthesized and the figure of merit was found to be ZT ~ 5X10⁻⁵ at room temperature. The effect of a ligand exchange treatment to replace the long chain organic ligand on the as-synthesized nanoparticles with a short chain alkyl ligand was explored. After ligand exchange treatment with hydrazine the figure of merit of sub-100 nm Bi₂Te₃ was found to increase by two fold to ZT ~ 1X10⁻⁴ at room temperature. Overall the figure of merit is low compared to other nanostructured Bi₂Te₃, this was attributed to the extremely low electrical conductivity. The thermopower and thermal conductivity were found to be ~96 μVK⁻¹ and ~0.38 Wm⁻¹ K⁻¹ at 300 K respectively, which show improvements over other nanostructured Bi₂Te₃.  Further optimisation of the figure of merit was also investigated by incorporating Cu, Ni and Co dopants. The most successful of these attempts was Co in which 14.5% Co relative to Bi was successfully incorporated into sub-100 nm Bi₂Te₃. The figure of merit of nanostructured Bi₁.₇₁Co₀.₂₉Te₁.₇₁ alloy was found to increase by 40% to a ZT ~ 1.4X10⁻⁴ at room temperature. Although overall the figure of merit is low, the effect of Co alloying and hydrazine treatment shows potential as a route to optimise the figure of merit.  A potential novel material for thermoelectrics applications is inorganicorganic perovskite single crystals. Here we report a synthetic strategy to successfully grow large millimetre scale single crystals of MAPbBr₃₋xClx, FAPbBr₃₋xClx, and MAPb₁-xSnxBr₃ (MA = methylammonium and FA = formamidinium) using inverse temperature crystallisation (ITC) in a matter of days. This is the first reported case of mixed Br/Cl single crystals with a FA cation and mixed Pb/Sn based perovskites grown using ITC. The bandgap of these single crystals was successfully tuned by altering the halide and metal site composition. It was found that single crystals of FAPbBr₃₋xClx were prone to surface degradation with increased synthesis time. This surface degradation was observed to be reversible by placing the single crystals in an antisolvent such as chloroform.  A tentative model was proposed to analyse the IV characteristics of the single crystal perovskites in order to extract mobilities and diffusion lengths. The MAPbBr₃ and MAPbBr₂.₅Cl₀.₅ single crystal mobilities were found to be between 30-390 cm² V⁻¹ s⁻¹ and 10-100 cm² V⁻¹ s⁻¹ respectively, the diffusion lengths were found to be between 2-8 μm and 1-4 μm respectively. This is an improvement over polycrystalline thin film perovskites and comparable to other single crystal perovskites. The conductance of MAPb₁-xSnxBr₃ based perovskites was found to increase by 2 orders of magnitude even with just 1% of Sn incorporated. The thermal conductivity of MAPbBr₃ single crystals was found to be ~1.12 Wm⁻¹ K⁻¹ at room temperature which is reasonable low for single crystals, however no other thermoelectric properties could be measured due to the self cleaving nature of the single crystals with decreasing temperature and the high resistivity of the material.</p>


Solar RRL ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 2000062 ◽  
Author(s):  
Dong Yuan ◽  
Feilong Pan ◽  
Lianjie Zhang ◽  
Haiying Jiang ◽  
Mingjun Chen ◽  
...  

2017 ◽  
Vol 5 (10) ◽  
pp. 4932-4939 ◽  
Author(s):  
Lirong Song ◽  
Jiawei Zhang ◽  
Bo B. Iversen

Ag doping in Mg3Sb2 leads to an enhanced average figure-of-merit (zT) by simultaneously improving the power factor and thermal conductivity.


2010 ◽  
Vol 39 (9) ◽  
pp. 1760-1763 ◽  
Author(s):  
C. Drasar ◽  
A. Hovorkova ◽  
P. Lostak ◽  
S. Ballikaya ◽  
C.-P. Li ◽  
...  

2002 ◽  
Vol 19 (1) ◽  
pp. 81-88 ◽  
Author(s):  
R Gaume ◽  
P.H Haumesser ◽  
B Viana ◽  
D Vivien ◽  
B Ferrand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document