scholarly journals The potential role of the adipokine HMGB1 in obesity and insulin resistance. Novel effects on adipose tissue biology

Author(s):  
R. Guzmán-Ruiz ◽  
Tercero-Alcázar C. López-Alcalá J ◽  
J. Sánchez-Ceinos ◽  
Malagón Mm ◽  
Gordon A
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Julia H. Goedecke ◽  
Naomi S. Levitt ◽  
Juliet Evans ◽  
Nicole Ellman ◽  
David John Hume ◽  
...  

Women of African ancestry, particularly those living in industrialized countries, experience a disproportionately higher prevalence of type 2 diabetes (T2D) compared to their white counterparts. Similarly, obesity and insulin resistance, which are major risk factors for T2D, are greater in black compared to white women. The exact mechanisms underlying these phenomena are not known. This paper will focus on the role of adipose tissue biology. Firstly, the characteristic body fat distribution of women of African ancestry will be discussed, followed by the depot-specific associations with insulin resistance. Factors involved in adipose tissue biology and their relation to insulin sensitivity will then be explored, including the role of sex hormones, glucocorticoid metabolism, lipolysis and adipogenesis, and their consequent effects on adipose tissue hypoxia, oxidative stress, and inflammation. Finally the role of ectopic fat deposition will be discussed. The paper proposes directions for future research, in particular highlighting the need for longitudinal and/or intervention studies to better understand the mechanisms underlying the high prevalence of insulin resistance and T2D in women of African ancestry.


Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 554
Author(s):  
Stefania Croce ◽  
Maria Antonietta Avanzini ◽  
Corrado Regalbuto ◽  
Erika Cordaro ◽  
Federica Vinci ◽  
...  

In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.


2009 ◽  
Vol 68 (4) ◽  
pp. 378-384 ◽  
Author(s):  
Henrike Sell ◽  
Jürgen Eckel

A strong causal link between increased adipose tissue mass and insulin resistance in tissues such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes. Increased adipose tissue mass in obese patients and patients with diabetes is associated with altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue releases a wide range of chemotactic proteins including many chemokines and chemerin, which are interesting targets for adipose tissue biology and for biomedical research in obesity and obesity-related diseases. This class of adipokines may be directly linked to a chronic state of low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in obese patients may be the most important factor linking increased adipose tissue mass to insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this situation, as many of these proteins possess biological activity beyond the recruitment of immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive tissues. The present review provides a summary of experimental evidence of the role of adipose tissue-derived chemotactic cytokines and their function in insulin resistancein vivoandin vitro.


Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jacqueline F Machi ◽  
Nathalia Bernardes ◽  
Danielle S Dias ◽  
Cristiano Mostarda ◽  
Edson Moreira ◽  
...  

This study evaluated the chronic effects of the run and walk in the metabolic and cardiovascular parameters of a metabolic syndrome experimental model. Male Wistar rats were divided into 4 groups(n=8): Control (C),Sedentary Fructose (SF), Fructose Run (FR) and Fructose Walk (FW, n= 8). Metabolic syndrome (MS) induction was performed with D-fructose in drinking water for 18 weeks. The exercise training was initiated after the nineth week of treatment with fructose and was held for 8 weeks (60 minutes/day, 5 times / week). The FW and FR were performed on a treadmill (1 h/day; 5 days/wk for 8 wk), with ∼20% and 60% intensities respectively of the maximum speed in a maximal exercise test. Plasma glucose, triglycerides, insulin resistance, adipose tissue, blood pressure, heart rate, baroreceptor sensitivity and sympathetic and parasympathetic tone, were evaluated at the end of protocol. The results showed that run and walking decreased the adipose tissue (FR: 2.97±0.2; FW: 4.26±0.9; SF: 6.49±0.6; C: 3.23±0.2 g). The glycemia values remained within the normal range,(FR: 86.7±2.3; WF: 91.0±1.4; SF: 70.2±1.9; C: 84±2.3 mg/dl), however only the FR group decreased the triglycerides levels (FR: 133±8.8; FW: 159±10.2; SF: 220±6.3; C: 96± 4.2 mg/dl), and the insulin resistance (FR: 4.37±0.1; FW: 3.55±0.2; SF: 2.79±0.3; C: 4.86±0.3 %/min). The FR group showed a reduction in mean arterial pressure (FR: 111±4.5, FW: 125±4.1; SF: 137±2.6, C: 113±1.5 mmHg) and increased of bradycardic (FR 1.76±0.08; FW 1.31±0.10; SF 1.37±0.10; C 1.72±0.14 bpm/mmHg) and tachycardic response to BP changes (FR 4.02±0.32; FW 2.56±0.16; SF 1.97±0.15; C (and C 3.25±0.37 bpm/mmHg). Finally we observed that only the FR group showed an increase of the vagal tone (FR: 72.3±8.1, FW: 47.3±6.7; FS: 40.3±4.6, C: 60.7±6.5 bpm). In conclusion, our results suggest that training walk (FW), a practice widely recommended, is especially effective for the treatment of metabolic disorders, whereas controlled exercise (FR) seems to encompass hemodynamic and metabolic aspects. This application is easy and within reach of the majority of the population, indicating that this practice should be encouraged and may be effective in managing cardiovascular risk in MS as start therapeutic. Sources of Funding:FAPESP.


2010 ◽  
Vol 7 (4) ◽  
pp. 8-11 ◽  
Author(s):  
N A Petunina ◽  
N E Al'tshuler ◽  
N G Rakova ◽  
L V Trukhina

The review presents a recent data from the literature on the physiologic and pathophysiologic role of adipose tissue hormones (adiponectin, resistin, leptin). The article details the role of adipocytokines in atherogenesis. It also presents the results of studies depicting the relationship between subclinical hypothyroidism, lipid metabolism and insulin resistance as well as the impact of thyroid dysfunction upon the secretion of adipocytokines.


Sign in / Sign up

Export Citation Format

Share Document