scholarly journals Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: Role of monocarboxylate transporter function

2019 ◽  
Vol 95 ◽  
pp. 51-58 ◽  
Author(s):  
A.S.M. Hasan Mahmood ◽  
Santosh K. Mandal ◽  
Khaggeswar Bheemanapally ◽  
Mostafa M.H. Ibrahim ◽  
K.P. Briski
Endocrinology ◽  
2002 ◽  
Vol 143 (2) ◽  
pp. 607-614 ◽  
Author(s):  
Gregor Majdic ◽  
Morag Young ◽  
Elise Gomez-Sanchez ◽  
Paul Anderson ◽  
Lidia S. Szczepaniak ◽  
...  

Abstract Knockout (KO) mice lacking steroidogenic factor 1 (SF-1) exhibit a phenotype that includes adrenal and gonadal agenesis, impaired gonadotropin expression, and abnormalities of the ventromedial hypothalamic nucleus (VMH). Studies in rodents with lesions of the ventromedial hypothalamus have implicated the VMH in body weight regulation, suggesting that SF-1 KO mice may provide a genetic model of obesity. To prevent death, SF-1 KO mice were rescued with corticosteroid injections, followed by syngeneic adrenal transplants from wild-type (WT) littermates. Corticosterone and ACTH levels in WT and SF-1 KO mice were indistinguishable, documenting restoration of hypothalamic-pituitary-adrenal function. Although weights at earlier ages did not differ significantly from WT littermates, SF-1 KO mice were significantly heavier by 8 wk of age and eventually weighed almost twice as much as WT controls. Obesity in SF-1 KO mice predominantly resulted from decreased activity rather than increased food intake. Leptin was increased markedly, insulin was modestly elevated, and glucose was indistinguishable from WT mice. Although sex steroids in rodents affect weight, ovariectomy did not abolish the weight difference between WT and SF-1 KO mice. These SF-1 KO mice are a genetic model of late-onset obesity that may help elucidate the role of the VMH in weight regulation.


1996 ◽  
Vol 17 (2) ◽  
pp. 139-147 ◽  
Author(s):  
M Wong ◽  
M S Ramayya ◽  
G P Chrousos ◽  
P H Driggers ◽  
K L Parker

ABSTRACT The orphan nuclear receptor steroidogenic factor 1 (SF-1) plays key roles in endocrine development and function. Initially identified as a positive regulator of the cytochrome P450 steroid hydroxylases, analyses of knockout mice deficient in SF-1 revealed that SF-1 is essential for adrenal and gonadal development, pituitary gonadotropin expression and formation of the ventromedial hypothalamic nucleus. Although more limited in scope, analyses of SF-1 in humans similarly have suggested that SF-1 is important for differentiated function in adrenocortical and gonadotrope adenomas. In the hope of extending our understanding of SF-1 function by identifying possible roles of SF-1 in clinical endocrine disorders, we isolated the FTZ-F1 gene encoding human SF-1 and mapped it to chromosome 9q33. In this report, we characterize the sequence and structural organization of the human cDNA and gene encoding SF-1, providing new insights into comparative aspects of SF-1 structure that will facilitate efforts to study the role of this transcription factor in human endocrine disorders.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2138-2148 ◽  
Author(s):  
Nathan C. Bingham ◽  
Kimberly K. Anderson ◽  
Anne L. Reuter ◽  
Nancy R. Stallings ◽  
Keith L. Parker

Leptin, an adipocyte-derived hormone, has emerged as a critical regulator of energy homeostasis. The leptin receptor (Lepr) is expressed in discrete regions of the brain; among the sites of highest expression are several mediobasal hypothalamic nuclei known to play a role in energy homeostasis, including the arcuate nucleus, the ventromedial hypothalamic nucleus (VMH), and the dorsomedial hypothalamic nucleus. Although most studies have focused on leptin’s actions in the arcuate nucleus, the role of Lepr in these other sites has received less attention. To explore the role of leptin signaling in the VMH, we used bacterial artificial chromosome transgenesis to target Cre recombinase to VMH neurons expressing steroidogenic factor 1, thereby inactivating a conditional Lepr allele specifically in steroidogenic factor 1 neurons of the VMH. These knockout (KO) mice, designated Lepr KOVMH, exhibited obesity, particularly when challenged with a high-fat diet. On a low-fat diet, Lepr KOVMH mice exhibited significantly increased adipose mass even when their weights were comparable to wild-type littermates. Furthermore, these mice exhibited a metabolic syndrome including hepatic steatosis, dyslipidemia, and hyperleptinemia. Lepr KOVMH mice were hyperinsulinemic from the age of weaning and eventually developed overt glucose intolerance. These data define nonredundant roles of the Lepr in VMH neurons in energy homeostasis and provide a model system for studying other actions of leptin in the VMH.


1984 ◽  
Vol 62 (12) ◽  
pp. 1533-1538 ◽  
Author(s):  
Lee L. Bernardis ◽  
Ping C. Lee ◽  
Stephen Brooks ◽  
Emanuel Lebenthal

Weanling male rats with ventromedial hypothalamic lesions (VMNL rats) and sham-operated controls were killed 1, 2, 4, and 5 weeks postoperatively. The VMNL rats developed normophagic hypothalamic obesity in the presence of normal body weight and reduced linear growth. In both VMNL and control rats, pancreatic weight and protein content increased with time but were lower in the lesioned animals. Pancreatic DNA content was arrested in VMNL rats and remained so during the remainder of the experiment. The only significant enzyme changes (trypsinogen, amylase, and lipase) were evident in higher trypsinogen concentration in VMNL rats during 2 and 4 weeks after lesion production. In view of previous data on both hypophysectomized and VMNL rats and the known role of the ventromedial hypothalamic nucleus in neuroendocrine and neuroautonomic function, it is speculated that the changes observed here are in part due to disruption of neuroendocrine and in part due to disturbance of neuroautonomic control systems.


Sign in / Sign up

Export Citation Format

Share Document