Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel

Measurement ◽  
2016 ◽  
Vol 86 ◽  
pp. 253-265 ◽  
Author(s):  
Nik Masmiati ◽  
Ahmed A.D. Sarhan ◽  
Mohsen Abdel Naeim Hassan ◽  
Mohd Hamdi
1970 ◽  
Vol 40 (2) ◽  
pp. 95-103 ◽  
Author(s):  
Md. Anayet Patwari ◽  
A.K.M. Nurul Amin ◽  
Waleed F. Faris

The present paper discusses the development of the first and second order models for predicting the tangential cutting force produced in end-milling operation of medium carbon steel. The mathematical model for the cutting force prediction has been developed, in terms of cutting parameters cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). All the individual cutting parameters affect on cutting forces as well as their interaction are also investigated in this study. The second order equation shows, based on the variance analysis, that the most influential input parameter was the feed rate followed by axial depth of cut and, finally, by the cutting speed. Central composite design was employed in developing the cutting force models in relation to primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The adequacy of the predictive model was verified using ANOVA at 95% confidence level. This paper presents an approach to predict cutting force model in end milling of medium carbon steel using coated TiN insert under dry conditions and full immersion cutting.Keywords: Tangential Cutting Forces; RSM; coated TiN; model.DOI: 10.3329/jme.v40i2.5350Journal of Mechanical Engineering, Vol. ME 40, No. 2, December 2009 95-103


2012 ◽  
Vol 576 ◽  
pp. 115-118
Author(s):  
A.K.M. Nurul Amin ◽  
Syidatul Akma ◽  
Maizatul Akma ◽  
M.D. Arif

One of the major technological parameters in metal cutting is surface roughness. It is an unavoidable, and often, unwanted by-product of all machining operations, especially end milling. Surface roughness is directly related to product quality and performance, operation cost, machining accuracy, and chatter. Today’s stringent customer requirements demand machined parts with minimum (mirror finished) products. Hence, the prediction, modeling, and optimization of surface roughness is a quintessential concern in machining research and industrial endeavor. This research was undertaken in order to determine whether end milling of medium carbon steel performed using chosen ranges of cutting parameter and under magnetic field generated by permanent magnets could effectively improve surface roughness. A small central composite design with five levels and an alpha value of 1.4142, in Response Surface Methodology, was used in developing the relationship between cutting speed, feed, and depth of cut, with surface roughness. Design-Expert 6.0 software was utilized to develop the quadratic empirical mathematical model for surface roughness. The experiments were performed under two different conditions. The first condition was cutting under normal conditions, while the other one was cutting under the application of magnetic fields from two permanent magnets. Medium carbon steel was used as the work material. The resultant average surface roughness was found to be reduced by a maximum of 59% due to magnet application.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2016 ◽  
Vol 302 ◽  
pp. 100-106 ◽  
Author(s):  
Erica Liverani ◽  
Adrian H.A. Lutey ◽  
Alessandro Ascari ◽  
Alessandro Fortunato ◽  
Luca Tomesani

Sign in / Sign up

Export Citation Format

Share Document