Inverse determination of thermal boundary condition and temperature distribution of workpiece during drilling process

Measurement ◽  
2021 ◽  
Vol 171 ◽  
pp. 108822
Author(s):  
Cai Lv ◽  
Guangjun Wang ◽  
Hong Chen
2011 ◽  
Vol 32 (3) ◽  
pp. 191-200 ◽  
Author(s):  
sławomir Grądziel

Determination of temperature and thermal stresses distribution in power boiler elements with use inverse heat conduction method The following paper presents the method for solving one-dimensional inverse boundary heat conduction problems. The method is used to estimate the unknown thermal boundary condition on inner surface of a thick-walled Y-branch. Solution is based on measured temperature transients at two points inside the element's wall thickness. Y-branch is installed in a fresh steam pipeline in a power plant in Poland. Determination of an unknown boundary condition allows for the calculation of transient temperature distribution in the whole element. Next, stresses caused by non-uniform transient temperature distribution and by steam pressure inside a Y-branch are calculated using the finite element method. The proposed algorithm can be used for thermal-strength state monitoring in similar elements, when it is not possible to determine a 3-D thermal boundary condition. The calculated temperature and stress transients can be used for the calculation of element durability. More accurate temperature and stress monitoring will contribute to a substantial decrease of maximal stresses that occur during transient start-up and shut-down processes.


2004 ◽  
Vol 126 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Hakan Ertu¨rk ◽  
Ofodike A. Ezekoye ◽  
John R. Howell

The boundary condition design of a three-dimensional furnace that heats an object moving along a conveyor belt of an assembly line is considered. A furnace of this type can be used by the manufacturing industry for applications such as industrial baking, curing of paint, annealing or manufacturing through chemical deposition. The object that is to be heated moves along the furnace as it is heated following a specified temperature history. The spatial temperature distribution on the object is kept isothermal through the whole process. The temperature distribution of the heaters of the furnace should be changed as the object moves so that the specified temperature history can be satisfied. The design problem is transient where a series of inverse problems are solved. The process furnace considered is in the shape of a rectangular tunnel where the heaters are located on the top and the design object moves along the bottom. The inverse design approach is used for the solution, which is advantageous over a traditional trial-and-error solution where an iterative solution is required for every position as the object moves. The inverse formulation of the design problem is ill-posed and involves a set of Fredholm equations of the first kind. The use of advanced solvers that are able to regularize the resulting system is essential. These include the conjugate gradient method, the truncated singular value decomposition or Tikhonov regularization, rather than an ordinary solver, like Gauss-Seidel or Gauss elimination.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koustav Konar ◽  
Kingshuk Bose ◽  
R. K. Paul

AbstractBlackbody radiation inversion is a mathematical process for the determination of probability distribution of temperature from measured radiated power spectrum. In this paper a simple and stable blackbody radiation inversion is achieved by using an analytical function with three determinable parameters for temperature distribution. This inversion technique is used to invert the blackbody radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to infer the temperature distribution of the generating medium. The salient features of this distribution are investigated and analysis of this distribution predicts the presence of distortion in the cosmic microwave background spectrum.


Author(s):  
G Atefi ◽  
M A Abdous ◽  
A Ganjehkaviri ◽  
N Moalemi

The objective of this article is to derive an analytical solution for a two-dimensional temperature field in a hollow cylinder, which is subjected to a periodic boundary condition at the outer surface, while the inner surface is insulated. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Because of the time-dependent term in the boundary condition, Duhamel's theorem is used to solve the problem for a periodic boundary condition. The periodic boundary condition is decomposed using the Fourier series. This condition is simulated with harmonic oscillation; however, there are some differences with the real situation. To solve this problem, first of all the boundary condition is assumed to be steady. By applying the method of separation of variables, the temperature distribution in a hollow cylinder can be obtained. Then, the boundary condition is assumed to be transient. In both these cases, the solutions are separately calculated. By using Duhamel's theorem, the temperature distribution field in a hollow cylinder is obtained. The final result is plotted with respect to the Biot and Fourier numbers. There is good agreement between the results of the proposed method and those reported by others for this geometry under a simple harmonic boundary condition.


1992 ◽  
Vol 15 (4) ◽  
pp. 789-794 ◽  
Author(s):  
G. Ramanaiah ◽  
V. Kumaran

The Darcy-Brinkman free convection near a wedge and a cone in a porous medium with high porosity has been considered. The surfaces are subjected to a mixed thermal boundary condition characterized by a parameterm;m=0,1,∞correspond to the cases of prescribed temperature, prescribed heat flux and prescribed heat transfer coefficient respectively. It is shown that the solutions for differentmare dependent and a transformation group has been found, through which one can get solution for anymprovided solution for a particular value ofmis known. The effects of Darcy number on skin friction and rate of heat transfer are analyzed.


Sign in / Sign up

Export Citation Format

Share Document