Effective multiple cancer disease diagnosis frameworks for improved healthcare using machine learning

Measurement ◽  
2021 ◽  
Vol 175 ◽  
pp. 109145
Author(s):  
Ching-Hsien Hsu ◽  
Xing Chen ◽  
Weiwei Lin ◽  
Chuntao Jiang ◽  
Youhong Zhang ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
O. Obulesu ◽  
Suresh Kallam ◽  
Gaurav Dhiman ◽  
Rizwan Patan ◽  
Ramana Kadiyala ◽  
...  

Cancer is a complicated worldwide health issue with an increasing death rate in recent years. With the swift blooming of the high throughput technology and several machine learning methods that have unfolded in recent years, progress in cancer disease diagnosis has been made based on subset features, providing awareness of the efficient and precise disease diagnosis. Hence, progressive machine learning techniques that can, fortunately, differentiate lung cancer patients from healthy persons are of great concern. This paper proposes a novel Wilcoxon Signed-Rank Gain Preprocessing combined with Generative Deep Learning called Wilcoxon Signed Generative Deep Learning (WS-GDL) method for lung cancer disease diagnosis. Firstly, test significance analysis and information gain eliminate redundant and irrelevant attributes and extract many informative and significant attributes. Then, using a generator function, the Generative Deep Learning method is used to learn the deep features. Finally, a minimax game (i.e., minimizing error with maximum accuracy) is proposed to diagnose the disease. Numerical experiments on the Thoracic Surgery Data Set are used to test the WS-GDL method's disease diagnosis performance. The WS-GDL approach may create relevant and significant attributes and adaptively diagnose the disease by selecting optimal learning model parameters. Quantitative experimental results show that the WS-GDL method achieves better diagnosis performance and higher computing efficiency in computational time, computational complexity, and false-positive rate compared to state-of-the-art approaches.


Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 642
Author(s):  
Yi-Da Wu ◽  
Ruey-Kai Sheu ◽  
Chih-Wei Chung ◽  
Yen-Ching Wu ◽  
Chiao-Chi Ou ◽  
...  

Background: Antinuclear antibody pattern recognition is vital for autoimmune disease diagnosis but labor-intensive for manual interpretation. To develop an automated pattern recognition system, we established machine learning models based on the International Consensus on Antinuclear Antibody Patterns (ICAP) at a competent level, mixed patterns recognition, and evaluated their consistency with human reading. Methods: 51,694 human epithelial cells (HEp-2) cell images with patterns assigned by experienced medical technologists collected in a medical center were used to train six machine learning algorithms and were compared by their performance. Next, we choose the best performing model to test the consistency with five experienced readers and two beginners. Results: The mean F1 score in each classification of the best performing model was 0.86 evaluated by Testing Data 1. For the inter-observer agreement test on Testing Data 2, the average agreement was 0.849 (?) among five experienced readers, 0.844 between the best performing model and experienced readers, 0.528 between experienced readers and beginners. The results indicate that the proposed model outperformed beginners and achieved an excellent agreement with experienced readers. Conclusions: This study demonstrated that the developed model could reach an excellent agreement with experienced human readers using machine learning methods.


Sign in / Sign up

Export Citation Format

Share Document