Kidney Disease Diagnosis Based on Machine Learning

Author(s):  
Bo Wang
2020 ◽  
Author(s):  
Hamida Ilyas ◽  
Sajid Ali ◽  
Mahvish Ponum ◽  
Osman Hasan ◽  
Muhammad Tahir Mahmood

Abstract Chronic Kidney Disease (CKD), i.e., gradual decrease in the renal function spanning over a duration of several months to years without any major symptoms, is a life-threatening disease. It progresses in six stages according to the severity level. It is categorized into various stages based on the Glomerular Filtration Rate (GFR), which in turn utilizes several attributes, like age, sex, race and Serum Creatinine. Among multiple available models for estimating GFR value, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), which is a linear model, has been found to be quite efficient because it allows detecting all CKD stages i.e., early stage to the last stage of kidney failure. Early detection and cure of CKD is extremely desirable as it can lead to the prevention of unwanted consequences. Machine learning are being extensively advocated for early detection of symptoms and diagnosis of several diseases recently. With the same motivation, the aim of this study is to predict the various stages of CKD using machine learning classification algorithms on the dataset obtained from the medical records of affected people. In particular, we have used the Random Forest and J48 algorithms to obtain a sustainable and practicable model to detect various stages of CKD with comprehensive medical accuracy. Comparative analysis of the results revealed that J48 predicted CKD in all stages better than random forest with a 85.5% accuracy. The study also showed that J48 shows improved performance over Random Forest, so, it may be used to build an automated system for the detection of severity of CKD.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hamida Ilyas ◽  
Sajid Ali ◽  
Mahvish Ponum ◽  
Osman Hasan ◽  
Muhammad Tahir Mahmood ◽  
...  

Abstract Background Chronic Kidney Disease (CKD), i.e., gradual decrease in the renal function spanning over a duration of several months to years without any major symptoms, is a life-threatening disease. It progresses in six stages according to the severity level. It is categorized into various stages based on the Glomerular Filtration Rate (GFR), which in turn utilizes several attributes, like age, sex, race and Serum Creatinine. Among multiple available models for estimating GFR value, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), which is a linear model, has been found to be quite efficient because it allows detecting all CKD stages. Methods Early detection and cure of CKD is extremely desirable as it can lead to the prevention of unwanted consequences. Machine learning methods are being extensively advocated for early detection of symptoms and diagnosis of several diseases recently. With the same motivation, the aim of this study is to predict the various stages of CKD using machine learning classification algorithms on the dataset obtained from the medical records of affected people. Specifically, we have used the Random Forest and J48 algorithms to obtain a sustainable and practicable model to detect various stages of CKD with comprehensive medical accuracy. Results Comparative analysis of the results revealed that J48 predicted CKD in all stages better than random forest with an accuracy of 85.5%. The study also showed that J48 shows improved performance over Random Forest. Conclusions The study concluded that it may be used to build an automated system for the detection of severity of CKD.


Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


2020 ◽  
Vol 47 (1) ◽  
pp. 67
Author(s):  
Areti Stavropoulou ◽  
Michael Rovithis ◽  
Maria G. Grammatikopoulou ◽  
Konstantina Kyriakidi ◽  
Andriani Pylarinou ◽  
...  

2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


Author(s):  
Pramila Arulanthu ◽  
Eswaran Perumal

: The medical data has an enormous quantity of information. This data set requires effective classification for accurate prediction. Predicting medical issues is an extremely difficult task in which Chronic Kidney Disease (CKD) is one of the major unpredictable diseases in medical field. Perhaps certain medical experts do not have identical awareness and skill to solve the issues of their patients. Most of the medical experts may have underprivileged results on disease diagnosis of their patients. Sometimes patients may lose their life in nature. As per the Global Burden of Disease (GBD-2015) study, death by CKD was ranked 17th place and GBD-2010 report 27th among the causes of death globally. Death by CKD is constituted 2·9% of all death between the year 2010 and 2013 among people from 15 to 69 age. As per World Health Organization (WHO-2005) report, 58 million people expired by CKD. Hence, this article presents the state of art review on Chronic Kidney Disease (CKD) classification and prediction. Normally, advanced data mining techniques, fuzzy and machine learning algorithms are used to classify medical data and disease diagnosis. This study reviews and summarizes many classification techniques and disease diagnosis methods presented earlier. The main intention of this review is to point out and address some of the issues and complications of the existing methods. It is also attempts to discuss the limitations and accuracy level of the existing CKD classification and disease diagnosis methods.


2021 ◽  
Vol 10 (10) ◽  
pp. 2046
Author(s):  
Goren Saenz-Pipaon ◽  
Saioa Echeverria ◽  
Josune Orbe ◽  
Carmen Roncal

Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in developed countries, affecting more than 40% of diabetes mellitus (DM) patients. DKD pathogenesis is multifactorial leading to a clinical presentation characterized by proteinuria, hypertension, and a gradual reduction in kidney function, accompanied by a high incidence of cardiovascular (CV) events and mortality. Unlike other diabetes-related complications, DKD prevalence has failed to decline over the past 30 years, becoming a growing socioeconomic burden. Treatments controlling glucose levels, albuminuria and blood pressure may slow down DKD evolution and reduce CV events, but are not able to completely halt its progression. Moreover, one in five patients with diabetes develop DKD in the absence of albuminuria, and in others nephropathy goes unrecognized at the time of diagnosis, urging to find novel noninvasive and more precise early diagnosis and prognosis biomarkers and therapeutic targets for these patient subgroups. Extracellular vesicles (EVs), especially urinary (u)EVs, have emerged as an alternative for this purpose, as changes in their numbers and composition have been reported in clinical conditions involving DM and renal diseases. In this review, we will summarize the current knowledge on the role of (u)EVs in DKD.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Peter Bramlage ◽  
Stefanie Lanzinger ◽  
Sascha R. Tittel ◽  
Eva Hess ◽  
Simon Fahrner ◽  
...  

Abstract Background Recent European Society of Cardiology (ESC)/European Association for the Study of Diabetes (EASD) guidelines provide recommendations for detecting and treating chronic kidney disease (CKD) in diabetic patients. We compared clinical practice with guidelines to determine areas for improvement. Methods German database analysis of 675,628 patients with type 1 or type 2 diabetes, with 134,395 included in this analysis. Data were compared with ESC/EASD recommendations. Results This analysis included 17,649 and 116,747 patients with type 1 and type 2 diabetes, respectively. The analysis showed that 44.1 and 49.1 % patients with type 1 and type 2 diabetes, respectively, were annually screened for CKD. Despite anti-diabetic treatment, only 27.2 % patients with type 1 and 43.5 % patients with type 2 achieved a target HbA1c of < 7.0 %. Use of sodium-glucose transport protein 2 inhibitors (1.5 % type 1/8.7 % type 2 diabetes) and glucagon-like peptide-1 receptor agonists (0.6 % type 1/5.2 % type 2 diabetes) was limited. Hypertension was controlled according to guidelines in 41.1 and 67.7 % patients aged 18–65 years with type 1 and 2 diabetes, respectively, (62.4 vs. 68.4 % in patients > 65 years). Renin angiotensin aldosterone inhibitors were used in 24.0 and 40.9 % patients with type 1 diabetes (micro- vs. macroalbuminuria) and 39.9 and 47.7 %, respectively, in type 2 diabetes. Conclusions Data indicate there is room for improvement in caring for diabetic patients with respect to renal disease diagnosis and treatment. While specific and potentially clinically justified reasons for non-compliance exist, the data may serve well for a critical appraisal of clinical practice decisions.


Sign in / Sign up

Export Citation Format

Share Document