Could fiber strains affect DAS amplitude response?

Measurement ◽  
2021 ◽  
pp. 110428
Author(s):  
Tao Xie ◽  
Cheng-Cheng Zhang ◽  
Bin Shi ◽  
Jun-Peng Li ◽  
Tai-Yin Zhang
Keyword(s):  
1995 ◽  
Vol 38 (1) ◽  
Author(s):  
R. Di Giovambattista ◽  
S. Barba ◽  
A. Marchetti

Automated amplitude response of the complete seismometer, telemetry and recording system js obtaiued trom sinusoidal inputs to the calibration coil. Custom-built software was designed to perform fully automatic cali- bration analyses of the digital signals. In this paper we describe the signals used for calibration and interactive and batch procedures designed to obtain calibration functions in automatic mode. By using a steady-state method we reach a high degree of accuracy in the determination of both the frequency and amplitude of the \ignal. The only parameters required by this procedure are the seismometer mass, the calibration-coil constant and the intensity of the current injected into the calibration coil. This procedure is applicable to telemetered seismic systems and represents an optimization of the processing time. The software was designed to requjre no modification" jf the device used to generate the sinusoidal current should change. In particular, it is possi- ble to changc the number of monotrequcncy packages transmitted to the calibration coil with the on]y restric- tion that the difference between the frequency of two consecutjve packages be greater than 5%; for these rea- sons the procedure is expected to be usefu] for the seismological community. The paper inc]udes a generaI de- scription of thc designing criteria, and of the hardware and software architecture, as well as an account of thc system's performancc during a two year period of operation.


1962 ◽  
Vol 52 (4) ◽  
pp. 767-779
Author(s):  
A. F. Espinosa ◽  
G. H. Sutton ◽  
H. J. Miller

abstract A transient technique for seismograph calibration was developed and tested by a variety of methods. In the application of this technique a known transient in the form of an electrical signal is injected, through (a) a Willmore-type calibration bridge or (b) an independent coil, into the seismometer and the corresponding output transient of the system is recorded. The ratio of the Fourier transform of this transient to that of the input pulse yields phase and relative amplitude response of the seismograph as a function of period. Absolute amplitude response may be calculated if two easily determined constants of the seismometer are known. This technique makes practical the daily calibration of continuously-recording seismographs without disturbing the instruments more than a very few minutes. The transient technique was tested and proven satisfactory with results of more conventional steady-state methods, using both digital and analog analyses of the output transients. A variety of output transients corresponding to various theoretical response curves has been calculated for two standard input transients. By comparison of the calculated output transients with experimental results it is possible to obtain the response of the instrument with considerable precision quickly and without computation.


1988 ◽  
Vol 78 (6) ◽  
pp. 2077-2088
Author(s):  
M. C. Chapman ◽  
J. A. Snoke ◽  
G. A. Bollinger

Abstract Efficient low-frequency calibration of the entire seismograph system can be accomplished by Fourier analysis of the system response to automatically generated transient test functions applied to the seismometer calibration coil. Typically, such calibrations are restricted to frequencies less than 10 Hz by the ambient ground motion, system noise, and limited dynamic range. To extend the calibration to a broader frequency range, we disconnect the seismometer and take advantage of the fact that the relative amplitude response of the electronic components in most systems can be measured with high accuracy at frequencies from as low as 0.02 Hz to the Nyquist frequency (e.g., 50 Hz) using standard electronics test equipment. The low-frequency amplitude response of the seismometer can then be isolated by dividing the total system response by that obtained for the electronic components. An iterative least-squares procedure is used to estimate the natural frequency and damping coefficient of the seismometer, along with a scaling parameter that specifies the absolute gain of the system. The phase response of the system is calculated directly from the amplitude response using the Hilbert transform. The procedure assumes that the seismometer is an ideal damped harmonic oscillator and that the system as a whole acts as a minimum phase filter. The only instrumental constants that must be known from independent measurement are the seismometer calibration coil force constant and the inertial mass.


Author(s):  
Dumitru I. Caruntu ◽  
Julio Beatriz ◽  
Jonathan Perez

Abstract This paper deals with voltage-amplitude response of superharmonic resonance of second order of electrostatically actuated clamped MEMS circular plates. A flexible MEMS circular plate, parallel to a ground plate, and under AC voltage, constitute the structure under consideration. Hard excitations due to voltage large enough and AC frequency near one fourth of the natural frequency of the MEMS plate resonator lead the MEMS plate into superharmonic resonance of second order. These excitations produce resonance away from the primary resonance zone. No DC component is included in the voltage applied. The equation of motion of the MEMS plate is solved using two modes of vibration reduced order model (ROM), that is then solved through a continuation and bifurcation analysis using the software package AUTO 07P. This predicts the voltage-amplitude response of the electrostatically actuated MEMS plate. Also, a numerical integration of the system of differential equations using Matlab is used to produce time responses of the system. A typical MEMS silicon circular plate resonator is used to conduct numerical simulations. For this resonator the quantum dynamics effects such as Casimir effect are considered. Also, the Method of Multiple Scales (MMS) is used in this work. All methods show agreement for dimensionless voltage values less than 6. The amplitude increases with the increase of voltage, except around the dimensionless voltage value of 4, where the resonance shows two saddle-node bifurcations and a peak amplitude significantly larger than the amplitudes before and after the dimensionless voltage of 4. A light softening effect is present. The pull-in dimensionless voltage is found to be around 16. The effects of damping and frequency on the voltage response are reported. As the damping increases, the peak amplitude decreases. while the pull-in voltage is not affected. As the frequency increases, the peak amplitude is shifted to lower values and lower voltage values. However, the pull-in voltage and the behavior for large voltage values are not affected.


1977 ◽  
Vol 67 (3) ◽  
pp. 957-969 ◽  
Author(s):  
Peter C. Luh

abstract This study shows that, provided a seismic instrument as a whole behaves linearly over its response range, and provided its phase response is known accurately, the instrumental responses can be parametrically expressed in terms of transfer functions of linear systems. The scheme is based on the observation that knowing accurately the detailed overall amplitude and phase responses of a linear instrument is tantamount to knowing all the pertinent constants for the construction of its overall transfer function. Because of generally poor quality of empirical phase calibrations, empirical phases are substituted by minimum phases, calculated via a Hilbert transform of amplitude response. Application of the scheme to actual SRO (LP) and USGS (SP) instruments resulted in sufficiently close agreements between parametric and actual responses to warrant the utility of the scheme.


Sign in / Sign up

Export Citation Format

Share Document