Effect of different carbon dioxide concentrations and exposure times in stunning of slaughter pigs: Impact on animal welfare and meat quality

Meat Science ◽  
2007 ◽  
Vol 75 (2) ◽  
pp. 290-298 ◽  
Author(s):  
B. Nowak ◽  
T.V. Mueffling ◽  
J. Hartung
Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2440
Author(s):  
Sophie Atkinson ◽  
Bo Algers ◽  
Joaquim Pallisera ◽  
Antonio Velarde ◽  
Pol Llonch

This study assessed aversion, stunning effectiveness, and product quality of nitrogen and carbon dioxide (CO2) mixtures used for stunning pigs. A total of 1852 slaughter pigs divided into two similar batches was assessed during routine slaughter in a Swedish commercial abattoir using either hypercapnic-hypoxia (20% CO2 and less than 2% O2; 20C2O) or hypercapnia (90% CO2; 90C) gas mixtures. Behavioral indicators of aversion and discomfort were recorded. After exposure, the stunning quality was assessed through brainstem reflexes. After slaughter, the pH and electric conductivity of carcasses were assessed to estimate the incidence of pale, soft, and exudative (PSE) pork, and the presence of ecchymosis were inspected. Compared to 90C, pigs exposed to 20C2O showed a later (p < 0.05) onset of behaviors indicative of aversion, and a lower (p < 0.01) incidence of breathlessness. However, unconsciousness (i.e., losing posture) appeared earlier (p < 0.01) in 90C compared to 20C2O. In 90C, all (100%) pigs were adequately stunned, whereas in 20C2O a 7.4% of pigs showed signs of poor stunning, especially when oxygen concentrations were >2% (p < 0.001). The percentage of PSE carcasses was higher (p < 0.01) in 20C2O than 90C. In conclusion, compared to 90C, 20C2O reduced aversion and discomfort but showed lower stun effectiveness, especially when O2 was above 2%, and a slightly poorer pork quality.


animal ◽  
2012 ◽  
Vol 6 (4) ◽  
pp. 668-675 ◽  
Author(s):  
P. Llonch ◽  
P. Rodríguez ◽  
M. Gispert ◽  
A. Dalmau ◽  
X. Manteca ◽  
...  

2011 ◽  
Vol 90 (8) ◽  
pp. 1831-1836 ◽  
Author(s):  
L. Xu ◽  
F. Ji ◽  
H.Y. Yue ◽  
S.G. Wu ◽  
H.J. Zhang ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Philipp de Vrese ◽  
Tobias Stacke ◽  
Jeremy Caves Rugenstein ◽  
Jason Goodman ◽  
Victor Brovkin

AbstractSimple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels.


2006 ◽  
Vol 3 (4) ◽  
pp. 297 ◽  
Author(s):  
Graham Jones ◽  
Gargi Joshi ◽  
Malcolm Clark ◽  
David McConchie

Environmental Context. Carbon dioxide concentrations in the atmosphere are rising every year by 1.5–3.0 ppm and there is now a general acceptance that increased efforts must be made to reduce industrial sources of this greenhouse gas. Carbonation of red mud wastes produced by aluminium refineries has been carried out to study the capacity of these wastes to capture carbon dioxide. Removal is very rapid, with the added carbon dioxide recorded as a large increase in bicarbonate alkalinity. Although these results can only be considered preliminary, the experiments indicate that these wastes can potentially remove up to 15 million tonnes of carbon dioxide produced in Australia per annum. Furthermore, the carbonated waste can be used in other industrial processes to add further value to these waste materials. Abstract. Carbonation of raw red mud produced by aluminium refineries and a chemically and physically neutralized red mud (Bauxsol™) has been carried out to study the capacity of these wastes to capture carbon dioxide. After only 5 min of carbonation of raw red mud, total alkalinity dropped 85%. Hydroxide alkalinity was almost totally consumed, carbonate alkalinity dropped by 88%, and bicarbonate alkalinity increased to 728 mg L–1. After 24 min carbonation, the bicarbonate alkalinity reached its maximum value of 2377 mg L–1, and hydroxide and carbonate alkalinity were virtually absent. After 30 and 60 min carbonation, bicarbonate alkalinity started to decrease slightly as the pH of the slurry increased. After 5 min carbonation of Bauxsol™, total and bicarbonate alkalinity dropped 89% and 9%, respectively. After 20 min carbonation, bicarbonate alkalinity dropped another 11%, but after 30 min carbonation bicarbonate alkalinity increased 26% to levels found in the original Bauxsol material, and pH was stable. Based on these experiments, a calculation of the amount of carbon dioxide that could be removed annually at aluminium refineries in Australia is potentially 15 million tonnes, and suggests that further studies are necessary to maximize this carbon removal process. Furthermore, carbonation produces a product, which can potentially be used in other industrial and agricultural activities to remove toxic metals and nutrients.


1978 ◽  
Vol 86 (3) ◽  
pp. 1149-1151
Author(s):  
P. M. Gramenitskii ◽  
V. A. Galichii ◽  
N. V. Petrova ◽  
N. Yu. Leont'eva

2001 ◽  
Vol 57 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Patricia Barton Gade ◽  
Karen Von Holleben ◽  
Martin Von Wenzlawowicz

2011 ◽  
Vol 108 (1-3) ◽  
pp. 135-148 ◽  
Author(s):  
Jan Siemens ◽  
Andreas Pacholski ◽  
Katia Heiduk ◽  
Anette Giesemann ◽  
Ulrike Schulte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document