Representative unit cell model of elastic spherical particle composite with interphase and/or general imperfect interface

2021 ◽  
pp. 103869
Author(s):  
Volodymyr I. Kushch
2007 ◽  
Vol 41 (7) ◽  
pp. 801-835 ◽  
Author(s):  
J.L. Oakeshott ◽  
L. Iannucci ◽  
P. Robinson

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Jun-Jun Zhai ◽  
Xiang-Xia Kong ◽  
Lu-Chen Wang

A homogenization-based five-step multi-scale finite element (FsMsFE) simulation framework is developed to describe the time-temperature-dependent viscoelastic behavior of 3D braided four-directional composites. The current analysis was performed via three-scale finite element models, the fiber/matrix (microscopic) representative unit cell (RUC) model, the yarn/matrix (mesoscopic) representative unit cell model, and the macroscopic solid model with homogeneous property. Coupling the time-temperature equivalence principle, multi-phase finite element approach, Laplace transformation and Prony series fitting technology, the character of the stress relaxation behaviors at three scales subject to variation in temperature is investigated, and the equivalent time-dependent thermal expansion coefficients (TTEC), the equivalent time-dependent thermal relaxation modulus (TTRM) under micro-scale and meso-scale were predicted. Furthermore, the impacts of temperature, structural parameters and relaxation time on the time-dependent thermo-viscoelastic properties of 3D braided four-directional composites were studied.


2021 ◽  
Vol 506 ◽  
pp. 230192
Author(s):  
Yunxiang Chen ◽  
Jie Bao ◽  
Zhijie Xu ◽  
Peiyuan Gao ◽  
Litao Yan ◽  
...  

2011 ◽  
Vol 488-489 ◽  
pp. 759-762
Author(s):  
L.Y. Li ◽  
M.H. Aliabadi ◽  
Pi Hua Wen

A Meshfree approach for continuum damage modeling of 3D orthogonal woven composites is presented. Two different shape function constructions, Radial basis (RB) function and Moving kriging (MK) interpolation, are utilized corresponding with Galerkin method in the Meshfree approach. The failure of two different unit cell models, straight-edge and smooth fabric unit cell model respectively, is compared.


2018 ◽  
Vol 53 (11) ◽  
pp. 1425-1436
Author(s):  
PC Upadhyay ◽  
JP Dwivedi ◽  
VP Singh

Coefficients of thermal expansion of some uniaxially fiber-reinforced composites have been evaluated using three-phase unit-cell model. Results have been compared with the values predicted by two other models based on composite cylinders assembly (CCA), and also with some earlier reported experimental values. An extension of the two-phase unit-cell model has also been presented for the evaluation of thermal expansion coefficients of three-phase composites. The formulation has been used to evaluate the overall coefficients of thermal expansion of AS-graphite/epoxy system with a low modulus coating on the fibers. The results have been compared with the results obtained from the Sutcu's recursive concentric cylinders model for composites containing coated fibers. From the comparison of results of the unit-cell models (both, two-phase and three-phase) with the results obtained from some other models available in the literature, it is concluded that the overall thermal properties of fiber-reinforced composites evaluated by the unit-cell model can be used as effectively as by any other model.


Sign in / Sign up

Export Citation Format

Share Document