scholarly journals Utility of Optical See-Through Head Mounted Displays in Augmented Reality-Assisted Surgery: A systematic review

2022 ◽  
pp. 102361
Author(s):  
Manuel Birlo ◽  
P.J. Eddie Edwards ◽  
Matthew Clarkson ◽  
Danail Stoyanov
2021 ◽  
Vol 55 (2) ◽  
pp. 64-80
Author(s):  
Michele Fiorentino ◽  
Francesco Laera ◽  
Alessandro Evangelista ◽  
Antonio Boccaccio ◽  
Vito M. Manghisi ◽  
...  

Abstract Today's sailing visualization instruments struggle to cope with the increasing number of onboard sensors, automation, artificial intelligence, and the high dynamism of the crew. Current solutions scatter multiple displays all over the boat, both inside and outside, potentially reducing usability and increasing costs. This work presents a systematic review of augmented reality (AR) as an integral solution for sailing data visualization, which revealed four scientific papers and eight commercial products. We analyzed the publication type, the AR hardware, what and how information is presented using AR, the validation method (if present), and the technological readiness. We defined the technical requirements needed for the AR device for sailing and distinguished a first generation of commercial solutions based on head-up displays from a second one based on proper augmentation with stereo head-mounted displays. The displayed information elements are limited in number and are commonly 2-D graphics (e.g., text and symbols) with a screen-relative frame of reference (as opposed to body- or world-relative). The most visualized elements are heading (10) followed by wind direction (8), boat speed (7) compass (7), and wind speed (7). We also found that most of the solutions lack critical evaluation. We conclude that AR has the potential to integrate sailing data from different systems and to improve accessibility, situation awareness, and safety for a large group of users. However, the main limitations are the lack of AR head-mounted displays suitable or adaptable for sailing conditions, an extensive exploration of 3-D interface elements, and an adequate number of usability studies in the scientific literature.


2021 ◽  
Author(s):  
Polona Caserman ◽  
Augusto Garcia-Agundez ◽  
Alvar Gámez Zerban ◽  
Stefan Göbel

AbstractCybersickness (CS) is a term used to refer to symptoms, such as nausea, headache, and dizziness that users experience during or after virtual reality immersion. Initially discovered in flight simulators, commercial virtual reality (VR) head-mounted displays (HMD) of the current generation also seem to cause CS, albeit in a different manner and severity. The goal of this work is to summarize recent literature on CS with modern HMDs, to determine the specificities and profile of immersive VR-caused CS, and to provide an outlook for future research areas. A systematic review was performed on the databases IEEE Xplore, PubMed, ACM, and Scopus from 2013 to 2019 and 49 publications were selected. A summarized text states how different VR HMDs impact CS, how the nature of movement in VR HMDs contributes to CS, and how we can use biosensors to detect CS. The results of the meta-analysis show that although current-generation VR HMDs cause significantly less CS ($$p<0.001$$ p < 0.001 ), some symptoms remain as intense. Further results show that the nature of movement and, in particular, sensory mismatch as well as perceived motion have been the leading cause of CS. We suggest an outlook on future research, including the use of galvanic skin response to evaluate CS in combination with the golden standard (Simulator Sickness Questionnaire, SSQ) as well as an update on the subjective evaluation scores of the SSQ.


2021 ◽  
Vol 11 (7) ◽  
pp. 3253
Author(s):  
Umile Giuseppe Longo ◽  
Sergio De Salvatore ◽  
Vincenzo Candela ◽  
Giuliano Zollo ◽  
Giovanni Calabrese ◽  
...  

Background: The application of virtual and augmented reality technologies to orthopaedic surgery training and practice aims to increase the safety and accuracy of procedures and reducing complications and costs. The purpose of this systematic review is to summarise the present literature on this topic while providing a detailed analysis of current flaws and benefits. Methods: A comprehensive search on the PubMed, Cochrane, CINAHL, and Embase database was conducted from inception to February 2021. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. The Cochrane Risk of Bias Tool and the Methodological Index for Non-Randomized Studies (MINORS) was used to assess the quality and potential bias of the included randomized and non-randomized control trials, respectively. Results: Virtual reality has been proven revolutionary for both resident training and preoperative planning. Thanks to augmented reality, orthopaedic surgeons could carry out procedures faster and more accurately, improving overall safety. Artificial intelligence (AI) is a promising technology with limitless potential, but, nowadays, its use in orthopaedic surgery is limited to preoperative diagnosis. Conclusions: Extended reality technologies have the potential to reform orthopaedic training and practice, providing an opportunity for unidirectional growth towards a patient-centred approach.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2234
Author(s):  
Sebastian Kapp ◽  
Michael Barz ◽  
Sergey Mukhametov ◽  
Daniel Sonntag ◽  
Jochen Kuhn

Currently an increasing number of head mounted displays (HMD) for virtual and augmented reality (VR/AR) are equipped with integrated eye trackers. Use cases of these integrated eye trackers include rendering optimization and gaze-based user interaction. In addition, visual attention in VR and AR is interesting for applied research based on eye tracking in cognitive or educational sciences for example. While some research toolkits for VR already exist, only a few target AR scenarios. In this work, we present an open-source eye tracking toolkit for reliable gaze data acquisition in AR based on Unity 3D and the Microsoft HoloLens 2, as well as an R package for seamless data analysis. Furthermore, we evaluate the spatial accuracy and precision of the integrated eye tracker for fixation targets with different distances and angles to the user (n=21). On average, we found that gaze estimates are reported with an angular accuracy of 0.83 degrees and a precision of 0.27 degrees while the user is resting, which is on par with state-of-the-art mobile eye trackers.


2015 ◽  
Vol 1 (1) ◽  
pp. 534-537 ◽  
Author(s):  
T. Mentler ◽  
C. Wolters ◽  
M. Herczeg

AbstractIn the healthcare domain, head-mounted displays (HMDs) with augmented reality (AR) modalities have been reconsidered for application as a result of commercially available products and the needs for using computers in mobile context. Within a user-centered design approach, interviews were conducted with physicians, nursing staff and members of emergency medical services. Additionally practitioners were involved in evaluating two different head-mounted displays. Based on these measures, use cases and usability considerations according to interaction design and information visualization were derived and are described in this contribution.


2019 ◽  
Vol 177 ◽  
pp. 6-11 ◽  
Author(s):  
William Omar Contreras López ◽  
Paula Alejandra Navarro ◽  
Santiago Crispin

Sign in / Sign up

Export Citation Format

Share Document