Analytical optimization of high-performance and high-yield spiral inductor in integrated passive device technology

2012 ◽  
Vol 43 (3) ◽  
pp. 176-181 ◽  
Author(s):  
Cong Wang ◽  
Nam-Young Kim
Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 508
Author(s):  
Wei Yue ◽  
Eun-Seong Kim ◽  
Bao-Hua Zhu ◽  
Jian Chen ◽  
Jun-Ge Liang ◽  
...  

In this study, we propose a high-performance resonator-based biosensor for mediator-free glucose identification. The biosensor is characterized by an air-bridge capacitor and fabricated via integrated passive device technology on gallium arsenide (GaAs) substrate. The exterior design of the structure is a spiral inductor with the air-bridge providing a sensitive surface, whereas the internal capacitor improves indicator performance. The sensing relies on repolarization and rearrangement of surface molecules, which are excited by the dropped sample at the microcosmic level, and the resonance performance variation corresponds to the difference in glucose concentration at the macroscopic level. The air-bridge capacitor in the modeled RLC circuit serves as a bio-recognition element to glucose concentration (εglucoseC0), generating resonant frequency shifts at 0.874 GHz and 1.244 GHz for concentrations of 25 mg/dL and 300 mg/dL compared to DI water, respectively. The proposed biosensor exhibits excellent sensitivity at 1.38 MHz per mg/dL with a wide detection range for glucose concentrations of 25–300 mg/dL and a low detection limit of 24.59 mg/dL. Additionally, the frequency shift and concentration are highly linear with a coefficient of determination of 0.98823. The response time is less than 3 s. We performed multiple experiments to verify that the surface morphology reveals no deterioration and chemical binding, thus validating the reusability and reliability of the proposed biosensor.


Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 463 ◽  
Author(s):  
Zhi-Ji Wang ◽  
Eun-Seong Kim ◽  
Jun-Ge Liang ◽  
Tian Qiang ◽  
Nam-Young Kim

This paper reports on the use of gallium arsenide-based integrated passive device technology for the implementation of a miniaturized bandpass filter that incorporates an intertwined circle-shaped spiral inductor and an integrated center-located capacitor. Air-bridge structures were introduced to the outer inductor and inner capacitor for the purpose of space-saving, thereby yielding a filter with an overall chip area of 1178 μm × 970 μm. Thus, not only is the chip area minimized, but the magnitude of return loss is also improved as a result of selective variation of bridge capacitance. The proposed device possesses a single passband with a central frequency of 1.71 GHz (return loss: 32.1 dB), and a wide fractional bandwidth (FBW) of 66.63% (insertion loss: 0.50 dB). One transmission zero with an amplitude of 43.42 dB was obtained on the right side of the passband at 4.48 GHz. Owing to its miniaturized chip size, wide FBW, good out-band suppression, and ability to yield high-quality signals, the fabricated bandpass filter can be implemented in various L-band applications such as mobile services, satellite navigation, telecommunications, and aircraft surveillance.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 73 ◽  
Author(s):  
Chun-He Quan ◽  
Zhi-Ji Wang ◽  
Jong-Chul Lee ◽  
Eun-Seong Kim ◽  
Nam-Young Kim

As one of the most commonly used devices in microwave systems, bandpass filters (BPFs) directly affect the performance of these systems. Among the processes for manufacturing filters, integrated passive device (IPD) technology provides high practicality and accuracy. Thus, to comply with latest development trends, a resonator-based bandpass filter with a high selectivity and a compact size, fabricated on a gallium arsenide (GaAs) substrate is developed. An embedded capacitor is connected between the ends of two divisions in a circular spiral inductor, which is intertwined to reduce its size to 0.024 λg × 0.013 λg with minimal loss, and along with the capacitor, it generates a center frequency of 1.35 GHz. The strong coupling between the two ports of the filter results in high selectivity, to reduce noise interference. The insertion loss and return loss are 0.26 dB and 25.6 dB, respectively, thus facilitating accurate signal propagation. The filter was tested to verify its high performance in several aspects, and measurement results showed good agreement with the simulation results.


2021 ◽  
Vol 7 (10) ◽  
pp. eabe8130
Author(s):  
Shangshang Chen ◽  
Xun Xiao ◽  
Hangyu Gu ◽  
Jinsong Huang

Perovskite-based electronic materials and devices such as perovskite solar cells (PSCs) have notoriously bad reproducibility, which greatly impedes both fundamental understanding of their intrinsic properties and real-world applications. Here, we report that organic iodide perovskite precursors can be oxidized to I2 even for carefully sealed precursor powders or solutions, which markedly deteriorates the performance and reproducibility of PSCs. Adding benzylhydrazine hydrochloride (BHC) as a reductant into degraded precursor solutions can effectively reduce the detrimental I2 back to I−, accompanied by a substantial reduction of I3−-induced charge traps in the films. BHC residuals in perovskite films further stabilize the PSCs under operation conditions. BHC improves the stabilized efficiency of the blade-coated p-i-n structure PSCs to a record value of 23.2% (22.62 ± 0.40% certified by National Renewable Energy Laboratory), and the high-efficiency devices have a very high yield. A stabilized aperture efficiency of 18.2% is also achieved on a 35.8-cm2 mini-module.


2021 ◽  
Vol 42 (4) ◽  
pp. 493-496
Author(s):  
Guangxu Shen ◽  
Wenjie Feng ◽  
Wenquan Che ◽  
Yongrong Shi ◽  
Yiming Shen

2021 ◽  
Author(s):  
Benjamin Schmuck ◽  
Gabriele Greco ◽  
Andreas Barth ◽  
Nicola M. Pugno ◽  
Jan Johansson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document