Device Technology for High-Yield and High-Performance InP/InGaAs DHBTs

2002 ◽  
pp. 83-88
2021 ◽  
Vol 7 (10) ◽  
pp. eabe8130
Author(s):  
Shangshang Chen ◽  
Xun Xiao ◽  
Hangyu Gu ◽  
Jinsong Huang

Perovskite-based electronic materials and devices such as perovskite solar cells (PSCs) have notoriously bad reproducibility, which greatly impedes both fundamental understanding of their intrinsic properties and real-world applications. Here, we report that organic iodide perovskite precursors can be oxidized to I2 even for carefully sealed precursor powders or solutions, which markedly deteriorates the performance and reproducibility of PSCs. Adding benzylhydrazine hydrochloride (BHC) as a reductant into degraded precursor solutions can effectively reduce the detrimental I2 back to I−, accompanied by a substantial reduction of I3−-induced charge traps in the films. BHC residuals in perovskite films further stabilize the PSCs under operation conditions. BHC improves the stabilized efficiency of the blade-coated p-i-n structure PSCs to a record value of 23.2% (22.62 ± 0.40% certified by National Renewable Energy Laboratory), and the high-efficiency devices have a very high yield. A stabilized aperture efficiency of 18.2% is also achieved on a 35.8-cm2 mini-module.


2021 ◽  
Author(s):  
Benjamin Schmuck ◽  
Gabriele Greco ◽  
Andreas Barth ◽  
Nicola M. Pugno ◽  
Jan Johansson ◽  
...  

Small ◽  
2016 ◽  
Vol 12 (39) ◽  
pp. 5442-5448 ◽  
Author(s):  
Fengqin Huang ◽  
Guanshui Ma ◽  
Juzhe Liu ◽  
Jie Lin ◽  
Xiaotian Wang ◽  
...  
Keyword(s):  

2012 ◽  
Vol 27 (5) ◽  
pp. 294-300 ◽  
Author(s):  
Betul Cekic ◽  
Ayfer Yurt Kilcar ◽  
Fazilet Zumrut Biber Muftuler ◽  
Perihan Unak ◽  
Emin Ilker Medine

PURPOSE: Current study is focused on extraction with methanol, purification, labeling with 131I using iodogen method of the yarrow plant and investigating in vivo biological activity using biodistribution and imaging studies on healthy animal models. The aim of the study is to contribute plant extracts to discover new drugs in the diagnosis and treatment of several diseases. METHODS: Nine female and nine male healthy Wistar albino rats, which were approximately 100-150 g in weight, were used for biodistribution studies. For imaging studies four healthy male Balb-C mice were used. Quality control studies were done utilizing thin layer radio chromatography (TLRC) and high performance liquid chromatography (HPLC) methods. For biodistribution studies, 131I radiolabeled Peak 7 (131I-Peak 7) was sterilized and injected into the tail veil of rats and imaging studies were obtained using Kodak FX PRO in vivo Imaging System. RESULTS: The radiolabeling yield of each purified the bioactive extracts of the yarrow plant, seven peaks was between 79 and 92%. The highest radiolabeling yield was calculated for 131I radiolabeled seventh peak (131I-Peak 7) (92.78±5.04, n=5). For this reason the biodistribution and imaging studies were done for 131I-Peak 7. That's why; these studies with Peak 7 were carried out. CONCLUSION: Peak 7 was radiolabeled with 131I in high yield for using imaging and therapeutic studies in nuclear medical applications.


Nanoscale ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 2351-2362 ◽  
Author(s):  
Jong Sik Oh ◽  
Ji Soo Oh ◽  
Da In Sung ◽  
Geun Young Yeom

Graphene nanoplatelets (GNP) have attracted considerable attention due to their high yield and fabrication route that is scalable to enable graphene production.


2008 ◽  
Vol 13 (3) ◽  
pp. 136-144
Author(s):  
S SZYMANSKI ◽  
K HUFF ◽  
A PATEL ◽  
J MURRAY ◽  
J FEASBY ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
Emmanuel Valentin ◽  
Stephane Auvray ◽  
Arianna Filoramo ◽  
Aline Ribayrol ◽  
Marcelo Goffman ◽  
...  

AbstractWe describe the realization of high quality self-assembled single wall carbon nanotube field effect transistors (CNTFET). A method using self-assembled monolayers (SAMs) is used to obtain high yield selective deposition placement of single wall carbon nanotubes (SWNTs) on predefined regions of a substrate. This is achieved with individual or small bundles of SWNTs and with high densities suitable for fabrication of integrated devices. We show that such positioned SWNTs can be electrically contacted to realize high performance transistors, which very well compare with state-of-the-art CNTFETs. We therefore validate the self-assembly approach to reliably fabricate efficient carbon nanotube based devices.


Sign in / Sign up

Export Citation Format

Share Document