scholarly journals Permittivity-Inspired Microwave Resonator-Based Biosensor Based on Integrated Passive Device Technology for Glucose Identification

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 508
Author(s):  
Wei Yue ◽  
Eun-Seong Kim ◽  
Bao-Hua Zhu ◽  
Jian Chen ◽  
Jun-Ge Liang ◽  
...  

In this study, we propose a high-performance resonator-based biosensor for mediator-free glucose identification. The biosensor is characterized by an air-bridge capacitor and fabricated via integrated passive device technology on gallium arsenide (GaAs) substrate. The exterior design of the structure is a spiral inductor with the air-bridge providing a sensitive surface, whereas the internal capacitor improves indicator performance. The sensing relies on repolarization and rearrangement of surface molecules, which are excited by the dropped sample at the microcosmic level, and the resonance performance variation corresponds to the difference in glucose concentration at the macroscopic level. The air-bridge capacitor in the modeled RLC circuit serves as a bio-recognition element to glucose concentration (εglucoseC0), generating resonant frequency shifts at 0.874 GHz and 1.244 GHz for concentrations of 25 mg/dL and 300 mg/dL compared to DI water, respectively. The proposed biosensor exhibits excellent sensitivity at 1.38 MHz per mg/dL with a wide detection range for glucose concentrations of 25–300 mg/dL and a low detection limit of 24.59 mg/dL. Additionally, the frequency shift and concentration are highly linear with a coefficient of determination of 0.98823. The response time is less than 3 s. We performed multiple experiments to verify that the surface morphology reveals no deterioration and chemical binding, thus validating the reusability and reliability of the proposed biosensor.

Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 463 ◽  
Author(s):  
Zhi-Ji Wang ◽  
Eun-Seong Kim ◽  
Jun-Ge Liang ◽  
Tian Qiang ◽  
Nam-Young Kim

This paper reports on the use of gallium arsenide-based integrated passive device technology for the implementation of a miniaturized bandpass filter that incorporates an intertwined circle-shaped spiral inductor and an integrated center-located capacitor. Air-bridge structures were introduced to the outer inductor and inner capacitor for the purpose of space-saving, thereby yielding a filter with an overall chip area of 1178 μm × 970 μm. Thus, not only is the chip area minimized, but the magnitude of return loss is also improved as a result of selective variation of bridge capacitance. The proposed device possesses a single passband with a central frequency of 1.71 GHz (return loss: 32.1 dB), and a wide fractional bandwidth (FBW) of 66.63% (insertion loss: 0.50 dB). One transmission zero with an amplitude of 43.42 dB was obtained on the right side of the passband at 4.48 GHz. Owing to its miniaturized chip size, wide FBW, good out-band suppression, and ability to yield high-quality signals, the fabricated bandpass filter can be implemented in various L-band applications such as mobile services, satellite navigation, telecommunications, and aircraft surveillance.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 73 ◽  
Author(s):  
Chun-He Quan ◽  
Zhi-Ji Wang ◽  
Jong-Chul Lee ◽  
Eun-Seong Kim ◽  
Nam-Young Kim

As one of the most commonly used devices in microwave systems, bandpass filters (BPFs) directly affect the performance of these systems. Among the processes for manufacturing filters, integrated passive device (IPD) technology provides high practicality and accuracy. Thus, to comply with latest development trends, a resonator-based bandpass filter with a high selectivity and a compact size, fabricated on a gallium arsenide (GaAs) substrate is developed. An embedded capacitor is connected between the ends of two divisions in a circular spiral inductor, which is intertwined to reduce its size to 0.024 λg × 0.013 λg with minimal loss, and along with the capacitor, it generates a center frequency of 1.35 GHz. The strong coupling between the two ports of the filter results in high selectivity, to reduce noise interference. The insertion loss and return loss are 0.26 dB and 25.6 dB, respectively, thus facilitating accurate signal propagation. The filter was tested to verify its high performance in several aspects, and measurement results showed good agreement with the simulation results.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


2021 ◽  
Vol 42 (4) ◽  
pp. 493-496
Author(s):  
Guangxu Shen ◽  
Wenjie Feng ◽  
Wenquan Che ◽  
Yongrong Shi ◽  
Yiming Shen

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 627
Author(s):  
David Marquez-Viloria ◽  
Luis Castano-Londono ◽  
Neil Guerrero-Gonzalez

A methodology for scalable and concurrent real-time implementation of highly recurrent algorithms is presented and experimentally validated using the AWS-FPGA. This paper presents a parallel implementation of a KNN algorithm focused on the m-QAM demodulators using high-level synthesis for fast prototyping, parameterization, and scalability of the design. The proposed design shows the successful implementation of the KNN algorithm for interchannel interference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. Additionally, we present a modified version of the KNN algorithm in which comparisons among data symbols are reduced by identifying the closest neighbor using the rule of the 8-connected clusters used for image processing. Real-time implementation of the modified KNN on a Xilinx Virtex UltraScale+ VU9P AWS-FPGA board was compared with the results obtained in previous work using the same data from the same experimental setup but offline DSP using Matlab. The results show that the difference is negligible below FEC limit. Additionally, the modified KNN shows a reduction of operations from 43 percent to 75 percent, depending on the symbol’s position in the constellation, achieving a reduction 47.25% reduction in total computational time for 100 K input symbols processed on 20 parallel cores compared to the KNN algorithm.


Author(s):  
ENDANG LUKITANINGSIH ◽  
FATHUL JANNAH ◽  
RATNA BUDHI PEBRIANA ◽  
RATNA DEWI PUSPITA ◽  
TAUFIQUROHMAN . ◽  
...  

Objective: This research aims to validate the method for rifampicin analysis in plasma by using High-Performance Liquid Chromatography (HPLC) that can be used to study the bioequivalence of a generic tablet of rifampicin 450 mg “X” marketed in Indonesia. Methods: Bioequivalence test was analysed using HPLC equipped with UV-Vis detector at 377 nm. The mobile phase used was acetonitrile-phosphate buffer pH 6.8 (45:55) delivered at a flow rate of 1.5 ml/min. Bioequivalence test was conducted on a limited number of subjects (n=8). The subjects were divided into two groups randomly. The pharmacokinetic profiles of the test tablet and reference tablet were statistically calculated using SPSS program to see the test tablet and reference tablet were bioequivalence or not. Results: The developed HPLC method for rifampicin analysis in plasma was sufficiently valid based on the International Conference on Harmonization (ICH) and European Medicines Agency (EMA) guideline, with precision and accuracy values were % Relative Standard Deviation (% RSD = 1.40–13.04) and % Recovery (86.24–102.13), respectively. Meanwhile, the method was linear over studied concentration (0.05 to 10.26 µg/ml) with a coefficient of determination (R2) = 0.9984. The method also had good stability and sensitivity. The result of statistical calculation showed that the generic rifampicin tablet X was bioequivalence toward the reference tablet Rimactan 450 mg. Conclusion: The test rifampicin tablet that was, the generic tablet “X” was bioequivalence toward the reference rifampicin tablet “Rimactan”.


2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Vojtech Vigner ◽  
Jaroslav Roztocil

Comparison of high-performance time scales generated by atomic clocks in laboratories of time and frequency metrology is usually performed by means of the Common View method. Laboratories are equipped with specialized GNSS receivers which measure the difference between a local time scale and a time scale of the selected satellite. Every receiver generates log files in CGGTTS data format to record measured differences. In order to calculate time differences recorded by two receivers, it is necessary to obtain these logs from both receivers and process them. This paper deals with automation and speeding up of these processes.


Sign in / Sign up

Export Citation Format

Share Document