Electroconvective circulating flows by Asymmetric Coulombic force distribution in multiscale porous membrane

2021 ◽  
pp. 119286
Author(s):  
Dokeun Lee ◽  
Daehyun Choi ◽  
Hyungmin Park ◽  
Hyomin Lee ◽  
Sung Jae Kim
2013 ◽  
Vol 4 (1) ◽  
pp. 1-12
Author(s):  
G. Lámer

Abstract The paper is an overview of issues related to the space creation of a building, possibilities of developing frame structure and connections of force distribution in the construction. In plane the force distribution can be compression, bending and tension. In space “enclosing” a geometric solid means space creation. In space as it is to be expected, the force distribution must be compression, bending and tension in two different directions at the same time. This can be really variant but in the case of surface or surface-like constructions generated by translations (and/or rotations) on one hand, there are some other surfaces, which cannot be generated by translations (and/or rotations), on the other hand, the dimension of the inside “forces” is not two but three (independent components of a two-by-two tensor either in the case of compression tension, or in the case of bending). By this, force distribution is more complicated in space than in plane.


1986 ◽  
Vol 14 (3) ◽  
pp. 139-159 ◽  
Author(s):  
A. G. Veith

Abstract A system, called the “Driving Severity Monitor” (DSM), has been developed for characterizing tire force distribution as related to treadwear in either normal tire use or in tire fleet testing in a convoy. The system consists of an accelerometer for monitoring lateral accelerations, a wheel revolution counter, and a module for signal processing and read-out. The output of the DSM is reduced to a single index, the Driving Severity Number (DSN), which characterizes a vehicle journey. The DSN is equal to the sum of squares of lateral acceleration measured once per tire revolution during a trip, divided by the number of wheel revolutions. The DSN had a high degree of correlation (R ≧ 0.95) with treadwear in two wear programs when pavement abrasiveness was held constant. This supports the concept that the three basic treadwear components: tire force distribution, pavement abrasiveness, and ambient temperature, can be separated for better understanding of tire treadwear.


1997 ◽  
Vol 35 (8) ◽  
pp. 137-144 ◽  
Author(s):  
Tsuyoshi Nomura ◽  
Takao Fujii ◽  
Motoyuki Suzuki

Porous membrane of poly(tetrafluoroethylene) (PTFE) was formed on the surface of porous ceramic tubes by means of heat treatment of the PTFE particles deposit layer prepared by filtering PTFE microparticles emulsified in aqueous phase. By means of inert gas permeation, pore size was determined and compared with scanning electron micrograph observation. Also rejection measurement of aqueous dextran solutions of wide range of molecular weights showed consistent results regarding the pore size. Since the membrane prepared by this method is stable and has unique features derived from PTFE, it is expected that the membrane has interesting applications in the field of water treatment. Membrane separation of activated sludge by this composite membrane and original ceramics membrane showed that the PTFE membrane gives better detachability of the cake layer formed on the membrane. This might be due to the hydrophobic nature of the PTFE skin layer.


1986 ◽  
Vol 51 (10) ◽  
pp. 2077-2082 ◽  
Author(s):  
Jan Langmaier ◽  
František Opekar

Gold porous membrane electrode has been used for the potentiometric determination of small amounts of sulfur dioxide absorbed in the solutions of sodium tetrachloromercurate or sodium hydroxide. Sulfur dioxide is released by the reaction with an acid into a stream of nitrogen and led to the electrode immersed into the solution of iodine monochloride. Part of SO2 penetrates through the membrane pores into the solution where it is oxidized. The electrode redox potential change is a measure of the SO2 concentration in the absorption solution. In the solution of 1 . 10-5 M[ICl2]- in 0.02 M-HClO4 the limit of quantitation was found to be 0.07 ng SO2 . ml-1. The relative standard deviations of 1.4% and 2.5% were found for the determinations of 10 ng and 0.5 ng of SO2, respectively. Higher concentrations of H2S interfere only in the hydroxide solution. About 10 samples can be analyzed per one hour.


2020 ◽  
Vol 20 (2) ◽  
pp. 700-706 ◽  
Author(s):  
Xuguang Sun ◽  
Jun Zhou ◽  
Ning Xue ◽  
Keshi Zhang ◽  
Shuaikang Zheng ◽  
...  

2013 ◽  
Vol 146 (6) ◽  
pp. 1381-1386 ◽  
Author(s):  
Philipp Aigner ◽  
Farsad Eskandary ◽  
Thomas Schlöglhofer ◽  
Roman Gottardi ◽  
Klaus Aumayr ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Eman M. Ibraheem ◽  
Hisham S. ElGabry

Abstract Background This study aimed to evaluate the effect of mandibular complete dentures relining using soft relining material on the distribution of various occlusal forces using T-Scan system. Fifty completely edentulous patients having their conventional complete dentures earlier fabricated and utilized were selected for this study. Patients were controlled diabetics, characterized by having their residual alveolar ridges moderately developed and lined with firm mucoperiosteum. Mandibular complete dentures were relined with soft denture liner and T-Scan device was used for occlusal force distribution measurement prior to denture relining and three months thereafter the relinning procedure. Results Comparison between occlusal forces percentages before and after denture relining revealed that occlusal forces percentages was significantly lower after denture relining in anterior area, significantly higher after denture relining in right posterior area, where it was insignificantly higher after relining in left posterior area. Conclusions Our findings revealed that the use of soft denture liner for mandibular complete denture relining significantly improved the occlusal load distribution. Clinical trial registration Trial registration NCT, NCT04701970. Registered 23/11/2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04701970


Biomechanics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 102-117
Author(s):  
Nasser Rezzoug ◽  
Vincent Hernandez ◽  
Philippe Gorce

A force capacity evaluation for a given posture may provide better understanding of human motor abilities for applications in sport sciences, rehabilitation and ergonomics. From data on posture and maximum isometric joint torques, the upper-limb force feasible set of the hand was predicted by four models called force ellipsoid, scaled force ellipsoid, force polytope and scaled force polytope, which were compared with a measured force polytope. The volume, shape and force prediction errors were assessed. The scaled ellipsoid underestimated the maximal mean force, and the scaled polytope overestimated it. The scaled force ellipsoid underestimated the volume of the measured force distribution, whereas that of the scaled polytope was not significantly different from the measured distribution but exhibited larger variability. All the models characterized well the elongated shape of the measured force distribution. The angles between the main axes of the modelled ellipsoids and polytopes and that of the measured polytope were compared. The values ranged from 7.3° to 14.3°. Over the entire surface of the force ellipsoid, 39.7% of the points had prediction errors less than 50 N; 33.6% had errors between 50 and 100 N; and 26.8% had errors greater than 100N. For the force polytope, the percentages were 56.2%, 28.3% and 15.4%, respectively.


Sign in / Sign up

Export Citation Format

Share Document