Nocodazole treatment interrupted Brucella abortus invasion in RAW 264.7 cells, and successfully attenuated splenic proliferation with enhanced inflammatory response in mice

2017 ◽  
Vol 103 ◽  
pp. 87-93 ◽  
Author(s):  
Alisha Wehdnesday Bernardo Reyes ◽  
Huynh Tan Hop ◽  
Lauren Togonon Arayan ◽  
Tran Xuan Ngoc Huy ◽  
Wongi Min ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


2013 ◽  
Vol 5 (5) ◽  
pp. 1345-1350 ◽  
Author(s):  
JIE ZHU ◽  
CHENGQUN LUO ◽  
PING WANG ◽  
QUANYONG HE ◽  
JIANDA ZHOU ◽  
...  

2018 ◽  
Vol 28 (10) ◽  
pp. 1723-1729 ◽  
Author(s):  
Tran Xuan Ngoc Huy ◽  
Alisha Wehdnesday Bernardo Reyes ◽  
Huynh Tan Hop ◽  
Lauren Togonon Arayan ◽  
Vu Hai Son ◽  
...  

2019 ◽  
Vol 68 ◽  
pp. 156-163 ◽  
Author(s):  
Fukushi Abekura ◽  
Junyoung Park ◽  
Choong-Hwan Kwak ◽  
Sun-Hyung Ha ◽  
Seung-Hak Cho ◽  
...  

2001 ◽  
Vol 69 (5) ◽  
pp. 3214-3223 ◽  
Author(s):  
Xiaohan Du ◽  
Martin G. Low

ABSTRACT Serum glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) activity is reduced over 75% in systemic inflammatory response syndrome. To investigate the mechanism of this response, expression of the GPI-PLD gene was studied in the mouse monocyte-macrophage cell line RAW 264.7 stimulated with lipopolysaccharide (LPS; 0.5 to 50 ng/ml). GPI-PLD mRNA was reduced approximately 60% in a time- and dose-dependent manner. Oxidative stress induced by 0.5 mM H2O2 or 50 μM menadione also caused a greater than 50% reduction in GPI-PLD mRNA. The antioxidant N-acetyl-l-cysteine attenuated the down-regulatory effect of H2O2but not of LPS. Cotreatment of the cells with actinomycin D inhibited down-regulation induced by either LPS or H2O2. The half-life of GPI-PLD mRNA was not affected by LPS, or decreased slightly with H2O2, indicating that the reduction in GPI-PLD mRNA is due primarily to transcriptional regulation. Stimulation with tumor necrosis factor alpha (TNF-α) resulted in ∼40% reduction in GPI-PLD mRNA in human A549 alveolar carcinoma cells but not RAW 264.7 cells, suggesting that alternative pathways could exist in different cell types for down-regulating GPI-PLD expression during an inflammatory response and the TNF-α autocrine signaling mechanism alone is not sufficient to recapitulate the LPS-induced reduction of GPI-PLD in macrophages. Sublines of RAW 264.7 cells with reduced GPI-PLD expression exhibited increased cell sensitivity to LPS stimulation and membrane-anchored CD14 expression on the cell surface. Our data suggest that down-regulation of GPI-PLD could play an important role in the control of proinflammatory responses.


2016 ◽  
Vol 38 (5) ◽  
pp. 1614-1620 ◽  
Author(s):  
Byoung-Man Kang ◽  
Byoung-Kwan An ◽  
Won-Seok Jung ◽  
Ho-Kyung Jung ◽  
Jung-Hee Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document