scholarly journals Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells

2013 ◽  
Vol 5 (5) ◽  
pp. 1345-1350 ◽  
Author(s):  
JIE ZHU ◽  
CHENGQUN LUO ◽  
PING WANG ◽  
QUANYONG HE ◽  
JIANDA ZHOU ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


2019 ◽  
Vol 68 ◽  
pp. 156-163 ◽  
Author(s):  
Fukushi Abekura ◽  
Junyoung Park ◽  
Choong-Hwan Kwak ◽  
Sun-Hyung Ha ◽  
Seung-Hak Cho ◽  
...  

2001 ◽  
Vol 69 (5) ◽  
pp. 3214-3223 ◽  
Author(s):  
Xiaohan Du ◽  
Martin G. Low

ABSTRACT Serum glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) activity is reduced over 75% in systemic inflammatory response syndrome. To investigate the mechanism of this response, expression of the GPI-PLD gene was studied in the mouse monocyte-macrophage cell line RAW 264.7 stimulated with lipopolysaccharide (LPS; 0.5 to 50 ng/ml). GPI-PLD mRNA was reduced approximately 60% in a time- and dose-dependent manner. Oxidative stress induced by 0.5 mM H2O2 or 50 μM menadione also caused a greater than 50% reduction in GPI-PLD mRNA. The antioxidant N-acetyl-l-cysteine attenuated the down-regulatory effect of H2O2but not of LPS. Cotreatment of the cells with actinomycin D inhibited down-regulation induced by either LPS or H2O2. The half-life of GPI-PLD mRNA was not affected by LPS, or decreased slightly with H2O2, indicating that the reduction in GPI-PLD mRNA is due primarily to transcriptional regulation. Stimulation with tumor necrosis factor alpha (TNF-α) resulted in ∼40% reduction in GPI-PLD mRNA in human A549 alveolar carcinoma cells but not RAW 264.7 cells, suggesting that alternative pathways could exist in different cell types for down-regulating GPI-PLD expression during an inflammatory response and the TNF-α autocrine signaling mechanism alone is not sufficient to recapitulate the LPS-induced reduction of GPI-PLD in macrophages. Sublines of RAW 264.7 cells with reduced GPI-PLD expression exhibited increased cell sensitivity to LPS stimulation and membrane-anchored CD14 expression on the cell surface. Our data suggest that down-regulation of GPI-PLD could play an important role in the control of proinflammatory responses.


2016 ◽  
Vol 38 (5) ◽  
pp. 1614-1620 ◽  
Author(s):  
Byoung-Man Kang ◽  
Byoung-Kwan An ◽  
Won-Seok Jung ◽  
Ho-Kyung Jung ◽  
Jung-Hee Cho ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 1323 ◽  
Author(s):  
Ruiqing Yu ◽  
Qimeng Li ◽  
Zhihui Feng ◽  
Luhui Cai ◽  
Qiong Xu

N6-methyladenosine (m6A) is an abundant mRNA modification that affects multiple biological processes, including those involved in the cell stress response and viral infection. YTH domain family 2 (YTHDF2) is an m6A-binding protein that affects the localization and stability of targeted mRNA. RNA-binding proteins (RBPs) can regulate the stability of inflammatory gene mRNA transcripts, thus participating in the regulation of inflammatory processes. As an RBP, the role of YTHDF2 in the LPS-induced inflammatory reaction has not been reported. To elucidate the function of YTHDF2 in the inflammatory response of macrophages, we first detected the expression level of YTHDF2 in RAW 264.7 cells, and found that it was upregulated after LPS stimulation. YTHDF2 knockdown significantly increased the LPS-induced IL-6, TNF-α, IL-1β, and IL-12 expression and the phosphorylation of p65, p38, and ERK1/2 in NF-κB and MAPK signaling. Moreover, the upregulated expression of TNF-α and IL-6 in cells with silenced YTHDF2 expression was downregulated by the NF-κB, p38, and ERK inhibitors. YTHDF2 depletion increased the expression and stability of MAP2K4 and MAP4K4 mRNAs. All of these results suggest that YTHDF2 knockdown increases mRNA expression levels of MAP2K4 and MAP4K4 via stabilizing the mRNA transcripts, which activate MAPK and NF-κB signaling pathways, which promote the expression of proinflammatory cytokines and aggravate the inflammatory response in LPS-stimulated RAW 264.7 cells.


Sign in / Sign up

Export Citation Format

Share Document