scholarly journals The cell surface adhesins of Mycobacterium tuberculosis

2020 ◽  
Vol 232 ◽  
pp. 126392 ◽  
Author(s):  
Vivek Vinod ◽  
Sukhithasri Vijayrajratnam ◽  
Anil Kumar Vasudevan ◽  
Raja Biswas
2015 ◽  
Vol 43 (5) ◽  
pp. 787-794 ◽  
Author(s):  
Edward N. Baker ◽  
Christopher J. Squire ◽  
Paul G. Young

The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength.


Author(s):  
Baldeep Khare ◽  
Alexandra Samal ◽  
Krishnan Vengadesan ◽  
K. R. Rajashankar ◽  
Xin Ma ◽  
...  

Sortases are cysteine transpeptidases that are essential for the assembly and anchoring of cell-surface adhesins in Gram-positive bacteria. InStreptococcus agalactiae(GBS), the pilin-specific sortase SrtC1 catalyzes the polymerization of pilins encoded by pilus island 1 (PI-1) and the housekeeping sortase SrtA is necessary for cell-wall anchoring of the resulting pilus polymers. These sortases are known to utilize different substrates for pilus polymerization and cell-wall anchoring; however, the structural correlates that dictate their substrate specificity have not yet been clearly defined. This report presents the expression, purification and crystallization of SrtC1 (SAG0647) and SrtA (SAG0961) fromS. agalactiaestrain 2603V/R. The GBS SrtC1 has been crystallized in three crystal forms and the GBS SrtA has been crystallized in one crystal form.


Microbiology ◽  
1995 ◽  
Vol 141 (9) ◽  
pp. 2123-2130 ◽  
Author(s):  
F.-X. Berthet ◽  
J. Rauzier ◽  
E. M. Lim ◽  
W. Philipp ◽  
B. Gicquel ◽  
...  

2008 ◽  
Vol 190 (8) ◽  
pp. 2851-2857 ◽  
Author(s):  
Shawn S. Nelson ◽  
Sreelekha Bollampalli ◽  
Mark J. McBride

ABSTRACT Cells of the gliding bacterium Flavobacterium johnsoniae move rapidly over surfaces by an unknown mechanism. Transposon insertions in sprB resulted in cells that were defective in gliding. SprB is a highly repetitive 669-kDa cell surface protein, and antibodies against SprB inhibited the motility of wild-type cells. Polystyrene microspheres coated with antibodies against SprB attached to and were rapidly propelled along the cell surface, suggesting that SprB is one of the outermost components of the motility machinery. The movement of SprB along the cell surface supports a model of gliding motility in which motors anchored to the cell wall rapidly propel cell surface adhesins.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Michael J. Brennan

ABSTRACT The genome of Mycobacterium tuberculosis, the bacterium responsible for the disease tuberculosis, contains an unusual family of abundant antigens (PE/PPEs). To date, certain members of this multigene family occur only in mycobacteria that cause disease. It is possible that the numerous proteins encoded by these mycobacterial genes dictate the immune pathogenesis of this bacterial pathogen. There is also evidence that some of these antigens are present at the cell surface and that they affect the pathology and immunology of the organism in many ways. Also, they elicit both antibodies and T cells, they may be involved in antigenic variation, and they may be good candidates for vaccines and drugs. However, since they are plentiful and extremely homologous, these PE/PPEs are very challenging to study, and it is difficult to be certain what role(s) they have in the pathogenesis of tuberculosis. Consequently, how to develop treatments like vaccines using these antigens as candidates is complex.


2016 ◽  
Vol 111 (5) ◽  
pp. 1008-1013 ◽  
Author(s):  
Abhishek Shrivastava ◽  
Thibault Roland ◽  
Howard C. Berg

2020 ◽  
Vol 11 ◽  
Author(s):  
Jees Sebastian ◽  
Rashmi Ravindran Nair ◽  
Sharmada Swaminath ◽  
Parthasarathi Ajitkumar

Majority of the cells in the bacterial populations exposed to lethal concentrations of antibiotics for prolonged duration succumbs to the antibiotics’ sterilizing activity. The remaining cells survive by diverse mechanisms that include reduced permeability of the antibiotics. However, in the cells surviving in the continued presence of lethal concentrations of antibiotics, it is not known whether any cell surface alterations occur that in turn may reduce permeability of the antibiotics. Here we report the presence of a highly negatively charged, hydrophilic, thickened capsular outer layer (TCOL) on a small proportion of the rifampicin surviving population (RSP) of Mycobacterium tuberculosis (Mtb) cells upon prolonged continuous exposure to bactericidal concentrations of rifampicin in vitro. The TCOL reduced the intracellular entry of 5-carboxyfluorescein-rifampicin (5-FAM-rifampicin), a fluorochrome-conjugated rifampicin permeability probe of negligible bacteriocidal activity but comparable properties. Gentle mechanical removal of the TCOL enabled significant increase in the 5-FAM-rifampicin permeability. Zeta potential measurements of the cells’ surface charge and hexadecane assay for cell surface hydrophobicity showed that the TCOL imparted high negative charge and polar nature to the cells’ surface. Flow cytometry using the MLP and RSP cells, stained with calcofluor white, which specifically binds glucose/mannose units in β (1 → 4) or β (1 → 3) linkages, revealed the presence of lower content of polysaccharides containing such residues in the TCOL. GC-MS analyses of the TCOL and the normal capsular outer layer (NCOL) of MLP cells showed elevated levels of α-D-glucopyranoside, mannose, arabinose, galactose, and their derivatives in the TCOL, indicating the presence of high content of polysaccharides with these residues. We hypothesize that the significantly high thickness and the elevated negative charge of the TCOL might have functioned as a physical barrier restricting the permeability of the relatively non-polar rifampicin. This might have reduced intracellular rifampicin concentration enabling the cells’ survival in the continued presence of high doses of rifampicin. In the context of our earlier report on the de novo emergence of rifampicin-resistant genetic mutants of Mtb from the population surviving under lethal doses of the antibiotic, the present findings attain clinical significance if a subpopulation of the tubercle bacilli in tuberculosis patients possesses TCOL.


Sign in / Sign up

Export Citation Format

Share Document