Pathogen detection strategy based on CRISPR

2021 ◽  
pp. 107036
Author(s):  
Yachen Tian ◽  
Tao Liu ◽  
Cheng Liu ◽  
Qingqiang Xu ◽  
Qing Liu
2020 ◽  
Author(s):  
Wenjiao Chang ◽  
Yuru Shi ◽  
Yingjie Qi ◽  
Jiaxing Liu ◽  
Ting Liu ◽  
...  

Abstract Background: Novel coronavirus pneumonia (NCP) is an emerging, highly contagious community acquired pneumonia (CAP) caused by severe acute SARS-CoV-2. Nucleic acid test currently played a crucial role in diagnosis of suspected COVID-19 patients. However, a high false-negative rate of this “gold standard” test has been reported and posed a major setback in blocking the spread of the virus. We here aim to describe an optimized laboratory detection strategy to reduce the false negative rate. Methods: Suspected NCP patients were asked to collect both coughed up specimen and pharyngeal swab. Samples from the same patient were mixed and tested at a single pool. SARS-CoV-2 was then detected by real-time RT-PCR using two different detection kits. Only if both results were negative was the test reported as negative. The patients will be excluded after two consecutive negative tests at 24 hour intervals. We also used multiplex PCR to detect 13 common respiratory tract pathogens (RTP). Results: Using this strategy, we confirmed 85 SARS-CoV-2 infections from 181 suspected patients, and 94.12% of patients were positive in the first test. The 96 excluded patients were followed up, and no additional NCP was found. We also found that 31.25% patients in 96 non-NCP patients were infected with at least one RTP that may cause CAP. Conclusion: Our studies suggest that dual reagents screening with pooled coughed up specimen and pharyngeal swab samples reduced the false negative rate of nucleic acid testing. During the epidemic of NCP in Anhui province, there was a certain proportion of infection and co-infection of other common pathogens of CAP. In comparison with SARS-CoV-2 detection alone, combining multiple pathogen detection reduces the rate of miss diagnosis.


2012 ◽  
Author(s):  
Christopher Weaver ◽  
Avanti Jangalapalli ◽  
Kimberly Yano ◽  
Charles Ramskov ◽  
Paul Marcille

2018 ◽  
Vol 2018 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Min Zhao ◽  
Susana Diaz Amaya ◽  
Seon-ah Jin ◽  
Li-Kai Lin ◽  
Amanda J. Deering ◽  
...  

2005 ◽  
Author(s):  
J M Dzenitis ◽  
A J Makarewicz ◽  
D R Hadley ◽  
D M Gutierrez ◽  
T R Metz ◽  
...  

2014 ◽  
Vol 11 (2) ◽  
pp. 116-120 ◽  
Author(s):  
Yung-Sheng Lin ◽  
Ming-Yuan-Lee ◽  
Chih-Hui Yang ◽  
Keng-Shiang Huang

2020 ◽  
Vol 15 ◽  
Author(s):  
Akshatha Prasanna ◽  
Vidya Niranjan

Background: Since bacteria are the earliest known organisms, there has been significant interest in their variety and biology, most certainly concerning human health. Recent advances in Metagenomics sequencing (mNGS), a culture-independent sequencing technology have facilitated an accelerated development in clinical microbiology and our understanding of pathogens. Objective: For the implementation of mNGS in routine clinical practice to become feasible, a practical and scalable strategy for the study of mNGS data is essential. This study presents a robust automated pipeline to analyze clinical metagenomic data for pathogen identification and classification. Method: The proposed Clin-mNGS pipeline is an integrated, open-source, scalable, reproducible, and user-friendly framework scripted using the Snakemake workflow management software. The implementation avoids the hassle of manual installation and configuration of the multiple command-line tools and dependencies. The approach directly screens pathogens from clinical raw reads and generates consolidated reports for each sample. Results: The pipeline is demonstrated using publicly available data and is tested on a desktop Linux system and a High-performance cluster. The study compares variability in results from different tools and versions. The versions of the tools are made user modifiable. The pipeline results in quality check, filtered reads, host subtraction, assembled contigs, assembly metrics, relative abundances of bacterial species, antimicrobial resistance genes, plasmid finding, and virulence factors identification. The results obtained from the pipeline are evaluated based on sensitivity and positive predictive value. Conclusion: Clin-mNGS is an automated Snakemake pipeline validated for the analysis of microbial clinical metagenomics reads to perform taxonomic classification and antimicrobial resistance prediction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lisa Mellhammar ◽  
Fredrik Kahn ◽  
Caroline Whitlow ◽  
Thomas Kander ◽  
Bertil Christensson ◽  
...  

AbstractOne can falsely assume that it is well known that bacteremia is associated with higher mortality in sepsis. Only a handful of studies specifically focus on the comparison of culture-negative and culture-positive sepsis with different conclusions depending on study design. The aim of this study was to describe outcome for critically ill patients with either culture-positive or -negative sepsis in a clinical review. We also aimed to identify subphenotypes of sepsis with culture status included as candidate clinical variables. Out of 784 patients treated in intensive care with a sepsis diagnosis, blood cultures were missing in 140 excluded patients and 95 excluded patients did not fulfill a sepsis diagnosis. Of 549 included patients, 295 (54%) had bacteremia, 90 (16%) were non-bacteremic but with relevant pathogens detected and in 164 (30%) no relevant pathogen was detected. After adjusting for confounders, 90-day mortality was higher in bacteremic patients, 47%, than in non-bacteremic patients, 36%, p = 0.04. We identified 8 subphenotypes, with different mortality rates, where pathogen detection in microbial samples were important for subphenotype distinction and outcome. In conclusion, bacteremic patients had higher mortality than their non-bacteremic counter-parts and bacteremia is more common in sepsis when studied in a clinical review. For reducing population heterogeneity and improve the outcome of trials and treatment for sepsis, distinction of subphenotypes might be useful and pathogen detection an important factor.


Sign in / Sign up

Export Citation Format

Share Document