Faculty Opinions recommendation of A modular yeast biosensor for low-cost point-of-care pathogen detection.

Author(s):  
Pamela Silver
2018 ◽  
Vol 18 (18) ◽  
pp. 1559-1574 ◽  
Author(s):  
Satakshi Hazra ◽  
Sanjukta Patra

Background: Neglected tropical diseases (NTDs) are communicable diseases caused by a group of bacteria, viruses, protozoa and helminths prevalent in more than 145 countries that affect the world’s poverty stricken populations. WHO enlists 18 NTDs amongst people living in endemic areas having inaccessibility to preventive measures. Steps to reduce the global disease burden of the NTDs need attention at multi-factorial levels. Control programmes, mass drug administrations, transmission checks, eradication surveillances and diagnoses are some of them. The foremost in this list is confirmatory diagnosis. A comprehensive summary of the innovative, high-impact, multiplexed, low-cost diagnostic tools developed in the last decade that helped to meet the needs of users can depict a holistic approach to further evaluate potential technologies and reagents currently in research. Major Advancements: A literature survey based on developing nano-biotechnological platforms to meet the diagnostic challenges in NTDs towards development of a useful point-of-care (POC) unit is reported. However, in order to pave the way for complete eradication more sensitive tools are required that are user-friendly and applicable for use in endemic and low-resource settings. There are various novel research progresses/advancements made for qualitative and quantitative measurement of infectious load in some diseases like dengue, Chagas disease and leishmaniasis; though further improvements on the specificity and sensitivity front are still awaited. Strategies to combat the problem of antimicrobial drug resistance in diagnosis of NTDs have also been put forward by various research groups and organizations. Moreover, the state-of-the-art “omics” approaches like metabolomics and metagenomics have also started to contribute constructively towards diagnosis and prevention of the NTDs. Conclusion: A concrete solution towards a single specimen based common biomarker detection platform for NTDs is lacking. Identifying robust biomarkers and implementing them on simple diagnostic tools to ease the process of pathogen detection can help us understand the obstacles in current diagnostic measures of the NTDs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fei Zhao ◽  
Eun Yeong Lee ◽  
Geun Su Noh ◽  
Jaehyup Shin ◽  
Huifang Liu ◽  
...  

Abstract Here, we describe a simple, universal protocol for use in nucleic acid testing-based pathogen diagnostics, which requires only hand-powered sample preparation, including the processes of pathogen enrichment and nucleic acid isolation. The protocol uses low-cost amine-functionalized diatomaceous earth with a 1-μm Teflon filter as a reaction matrix in both stages of the process, using homobifunctional imidoesters. Using a simple syringe as a pump, the capture efficiency for a large sample volume (<50 mL) was enhanced by up to 98.3%, and the detection limit was 1 CFU/mL, 100-fold better than that of common commercial nucleic acid isolation kit. This protocol can also be combined with commercialized 96-well filter plates for robust sample preparation. Our proposed system is robust, simple, low-cost, universal, and rapid (taking <20 min), and it works regardless of the ambient environment and sample pretreatment, requiring no electricity or instruments. Its benefits include the simplicity of producing its components and its ease of operation, and it can be readily integrated with other assays for point-of-care diagnostics.


2020 ◽  
Author(s):  
John C. Bramley ◽  
Jason E. Waligorski ◽  
Colin L. Kremitzki ◽  
Mariel J. Liebeskind ◽  
Alex L. Yenkin ◽  
...  

AbstractDistributed “Point-of-Care” or “at-Home” testing is an important component for a complete suite of testing solutions. This manuscript describes the construction and operation of a platform technology designed to meet this need. The ongoing COVID-19 pandemic will be used as the proof-of-concept for the efficacy and deployment of this platform. The technology outlined consists of a one-pot, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) chemistry coupled with a low-cost and user-assembled reader using saliva as input. This platform is readily adapted to a wide range of pathogens due to the genetic basis of the reaction. A complete guide to the construction of the reader as well as the production of the reaction chemistry are provided here. Additionally, analytical limit of detection data and the results from saliva testing of SARS-CoV-2, are presented. The platform technology outlined here demonstrates a rapid, distributed, molecular point-of-care solution for pathogen detection using crude sample input.


2011 ◽  
Vol 58 (3) ◽  
pp. 805-808 ◽  
Author(s):  
J P Bearinger ◽  
L C Dugan ◽  
B R Baker ◽  
S B Hall ◽  
K Ebert ◽  
...  

2017 ◽  
Vol 3 (6) ◽  
pp. e1603221 ◽  
Author(s):  
Nili Ostrov ◽  
Miguel Jimenez ◽  
Sonja Billerbeck ◽  
James Brisbois ◽  
Joseph Matragrano ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 314-315
Author(s):  
James S Leathers ◽  
Maria Belen Pisano ◽  
Viviana Re ◽  
Gertine van Oord ◽  
Amir Sultan ◽  
...  

Abstract Background Treatment of HCV with direct-acting antivirals has enabled the discussion of HCV eradication worldwide. Envisioning this aim requires implementation of mass screening in resource-limited areas, usually constrained by testing costs. Methods We validated a low-cost, rapid diagnosis test (RDT) for HCV in three different continents in 141 individuals. Results The HCV RDT showed 100% specificity and sensitivity across different samples regardless of genotype or viral load (in samples with such information, 90%). Conclusions The HCV test validated in this study can allow for HCV screening in areas of need when properly used.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan Amalfitano ◽  
Margot Karlikow ◽  
Masoud Norouzi ◽  
Katariina Jaenes ◽  
Seray Cicek ◽  
...  

AbstractRecent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Biosensors ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Donggee Rho ◽  
Seunghyun Kim

An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.


Sign in / Sign up

Export Citation Format

Share Document